"Belyi map"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
*  Belyi's theorem on algebraic curves<br>
+
*  Belyi's theorem on algebraic curves
** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points $\{0,1,\infty\}$ only.
+
** any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points <math>\{0,1,\infty\}</math> only.
 
* Belyi map gives rise to a projective curve
 
* Belyi map gives rise to a projective curve
  
11번째 줄: 11번째 줄:
 
==Belyi maps of degree 2==
 
==Belyi maps of degree 2==
  
* Belyi map $f:\mathbb{P}^1\to \mathbb{P}^1$ defined by $z\mapsto z^2$
+
* Belyi map <math>f:\mathbb{P}^1\to \mathbb{P}^1</math> defined by <math>z\mapsto z^2</math>
  
 
 
 
 
19번째 줄: 19번째 줄:
 
==Grobner techniques==
 
==Grobner techniques==
  
* start with three permutations $(12), (23), (132)$. They generate $S_3$.
+
* start with three permutations <math>(12), (23), (132)</math>. They generate <math>S_3</math>.
* Riemann-Hurwitz formula gives the genus $g=1-3+(1+1+2)/2=0$
+
* Riemann-Hurwitz formula gives the genus <math>g=1-3+(1+1+2)/2=0</math>
  
 
 
 
 

2020년 11월 13일 (금) 08:43 판

introduction

  • Belyi's theorem on algebraic curves
    • any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points \(\{0,1,\infty\}\) only.
  • Belyi map gives rise to a projective curve

 

 

Belyi maps of degree 2

  • Belyi map \(f:\mathbb{P}^1\to \mathbb{P}^1\) defined by \(z\mapsto z^2\)

 

 

Grobner techniques

  • start with three permutations \((12), (23), (132)\). They generate \(S_3\).
  • Riemann-Hurwitz formula gives the genus \(g=1-3+(1+1+2)/2=0\)

 

 

complex analytic method

  • using modular forms

 

 

p-adic method

 


 

history

 

 

related items

 

expositions


articles

  • Ayberk Zeytin, Belyi Lattes Maps, arXiv:1011.5644[math.AG], November 25 2010, http://arxiv.org/abs/1011.5644v3
  • Van Hoeij, Mark, and Raimundas Vidunas. “Belyi Functions for Hyperbolic Hypergeometric-to-Heun Transformations.” Physical Review Letters 111, no. 10 (September 2013). doi:10.1103/PhysRevLett.111.107802.
  • Klug, Michael, Michael Musty, Sam Schiavone, and John Voight. 2013. “Numerical Calculation of Three-Point Branched Covers of the Projective Line.” arXiv:1311.2081 [math] (November 8). http://arxiv.org/abs/1311.2081.
  • Köck, Bernhard. “Belyi’s Theorem Revisited.” arXiv:math/0108222, August 31, 2001. http://arxiv.org/abs/math/0108222.

encyclopedia