"겔폰드-슈나이더 정리"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 +
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 +
 +
* [[겔폰드-슈나이더 정리]]
 +
 +
 
 +
 +
 
 +
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">겔폰드-슈나이더 정리</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">겔폰드-슈나이더 정리</h5>
  
102번째 줄: 110번째 줄:
  
 
* [http://www.math.sc.edu/~filaseta/gradcourses/Math785/main785.html Transcendental number theory]<br>
 
* [http://www.math.sc.edu/~filaseta/gradcourses/Math785/main785.html Transcendental number theory]<br>
** Michael Filaseta
+
** Michael Filaseta's Lecture notes
** Lecture notes
 
** [http://www.math.sc.edu/~filaseta/gradcourses/Math785/Math785Notes7.pdf Lindemann's Theorem]
 
 
** [http://www.math.sc.edu/~filaseta/gradcourses/Math785/Math785Notes8.pdf The Gelfond-Schneider Theorem and Some Related Results]
 
** [http://www.math.sc.edu/~filaseta/gradcourses/Math785/Math785Notes8.pdf The Gelfond-Schneider Theorem and Some Related Results]
* http://ko.wikipedia.org/wiki/
+
* [http://ko.wikipedia.org/w/index.php?title=%EA%B2%94%ED%8F%B0%EB%93%9C-%EC%8A%88%EB%82%98%EC%9D%B4%EB%8D%94_%EC%A0%95%EB%A6%AC http://ko.wikipedia.org/w/index.php?title=겔폰드-슈나이더_정리]
* http://en.wikipedia.org/wiki/
+
* [http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem http://en.wikipedia.org/wiki/Gelfond–Schneider_theorem]
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=

2009년 12월 18일 (금) 15:55 판

이 항목의 스프링노트 원문주소

 

 

겔폰드-슈나이더 정리

겔폰드-슈나이더 (1934)

\(\alpha \ne 0\),\(\alpha \ne 1\),\(\beta\notin \mathbb{Q}\) 인 복소수 \(\alpha\)와 \(\beta\) 가 대수적수이면, \(\alpha^{\beta} =\exp\{\beta \log \alpha\}\) 는 초월수이다.

 

 

Comments

  • In general, \(\alpha^{\beta} = \exp\{\beta \log \alpha\}\) is multivalued, where "log" stands for the complex logarithm. This accounts for the phrase "any value of" in the theorem's statement.
  • An equivalent formulation of the theorem is the following: if\(\alpha\) and \(\gamma\) are nonzero algebraic numbers, and we take any non-zero logarithm of \(\alpha\), then\((\log \gamma)/(\log \alpha)\) is either rational or transcendental.
  • If the restriction that \(\beta\) be algebraic is removed, the statement does not remain true in general (choose \(\alpha=3\) and \(\beta=\log 2/\log 3\), which is transcendental, then \(\alpha^{\beta}=2\) is algebraic). A characterization of the values for \(\alpha\) and \(\beta\) which yield a transcendental \(\alpha^{\beta}\) is not known.

 

(wikipedia 의 Gelfond–Schneider theorem 페이지에서)

 

 

겔폰드 상수
  • \(e^\pi\) 를 겔폰드 상수라 함
  • \(e^\pi=(e^{i\pi})^{-i}=(-1)^{i}\)
  • 겔폰드 슈나이더 정리를 적용하면, 초월수임이 증명.

 

겔폰드-슈나이더 상수
  • \(2^{\sqrt2}\)
  • 겔폰드 슈나이더 정리를 적용하면, 초월수임이 증명.

 

 

상위 주제

 

 

 

하위페이지

 

 

재미있는 사실

 

 

많이 나오는 질문과 답변

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상