"Complex hyperbolic geometry"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==introduction== * smallest volume of a closed, complex hyperbolic 2-manifold is $8\pi^2$ * the smallest volume of a cusped (and so of any) complex hyperbolic 2-manifold is $8\pi^2/3$...)
 
imported>Pythagoras0
10번째 줄: 10번째 줄:
 
* Falbel, Elisha, and John R. Parker. 2006. “The Geometry of the Eisenstein-Picard Modular Group.” Duke Mathematical Journal 131 (2): 249–289. doi:10.1215/S0012-7094-06-13123-X.
 
* Falbel, Elisha, and John R. Parker. 2006. “The Geometry of the Eisenstein-Picard Modular Group.” Duke Mathematical Journal 131 (2): 249–289. doi:10.1215/S0012-7094-06-13123-X.
 
* Zhao, Tiehong. 2011. “A Minimal Volume Arithmetic Cusped Complex Hyperbolic Orbifold.” Mathematical Proceedings of the Cambridge Philosophical Society 150 (2): 313–342. doi:10.1017/S0305004110000526.  
 
* Zhao, Tiehong. 2011. “A Minimal Volume Arithmetic Cusped Complex Hyperbolic Orbifold.” Mathematical Proceedings of the Cambridge Philosophical Society 150 (2): 313–342. doi:10.1017/S0305004110000526.  
 +
 +
==related items==
 +
* [[Hyperbolic orbifolds of small volume]]
  
  

2014년 2월 26일 (수) 09:06 판

introduction

  • smallest volume of a closed, complex hyperbolic 2-manifold is $8\pi^2$
  • the smallest volume of a cusped (and so of any) complex hyperbolic 2-manifold is $8\pi^2/3$


minimal volume cupsed orbifolds

  • there are two cusped, complex hyperbolic orbifolds with volume $\pi^2/27$
  • Eisenstein-Picard lattice
  • Falbel, Elisha, and John R. Parker. 2006. “The Geometry of the Eisenstein-Picard Modular Group.” Duke Mathematical Journal 131 (2): 249–289. doi:10.1215/S0012-7094-06-13123-X.
  • Zhao, Tiehong. 2011. “A Minimal Volume Arithmetic Cusped Complex Hyperbolic Orbifold.” Mathematical Proceedings of the Cambridge Philosophical Society 150 (2): 313–342. doi:10.1017/S0305004110000526.

related items


books


expositions


articles

  • Parker, John R. 1998. “On the Volumes of Cusped, Complex Hyperbolic Manifolds and Orbifolds.” Duke Mathematical Journal 94 (3): 433–464. doi:10.1215/S0012-7094-98-09418-2.
  • Hersonsky, Sa’ar, and Frédéric Paulin. 1996. “On the Volumes of Complex Hyperbolic Manifolds.” Duke Mathematical Journal 84 (3): 719–737. doi:10.1215/S0012-7094-96-08422-7.