"Hirota bilinear method"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
45번째 줄: 45번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
+
==encyclopedia==
  
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
81번째 줄: 81번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
+
==articles==
  
 
* [http://front.math.ucdavis.edu/0905.3776 Integrable deformations of CFTs and the discrete Hirota equations]<br>
 
* [http://front.math.ucdavis.edu/0905.3776 Integrable deformations of CFTs and the discrete Hirota equations]<br>

2012년 10월 28일 (일) 16:29 판

introduction

 

 

 

 

Advantages of the bilinear formalism:

  • Multisoliton solutions easy to construct.
  • The dependent variables are usually tau-functions, with good properties.
  • Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
  • Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.

 

 

example

http://www.thehcmr.org/issue2_1/soliton.pdf

 

history

 

 

related items

 

 

 

encyclopedia

 

 

books

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links