"Finite dimensional representations of Sl(2)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5>introduction</h5> | ||
+ | Define <math>w^{2(2k+3)}=1</math> and <math>z=w+w^{-1}</math> | ||
+ | |||
+ | <math>p_i(z)=\frac{w^{i+1}-w^{-i-1}}{w-w^{-1}}</math> for <math> i=1,\cdots, k</math> | ||
+ | |||
+ | |||
+ | |||
+ | solution for Nahm's equation is | ||
+ | |||
+ | <math>x_i=1-\frac{1}{p_i(z)^2}</math>. | ||
+ | |||
+ | This gives rise to <math>\varphi(2k+3)/2</math> solutions, on which the Galois group acts simply transitively. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | * <math>U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x)</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>recurrence relation</h5> | ||
+ | |||
+ | * <math>p_{0}(z)=1</math> | ||
+ | * <math>p_{1}(z)=z</math> | ||
+ | * <math>p_i(z)^2=1+p_{i-1}(z)p_{i+1}(z)</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>history</h5> | ||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>related items</h5> | ||
+ | |||
+ | * [[cyclotomic numbers and Chebyshev polynomials]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103);">encyclopedia</h5> | ||
+ | |||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://www.scholarpedia.org/ | ||
+ | * Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]]) | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>books</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * [[2010년 books and articles]]<br> | ||
+ | * http://gigapedia.info/1/ | ||
+ | * http://gigapedia.info/1/ | ||
+ | * http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103);">articles</h5> | ||
+ | |||
+ | [[2010년 books and articles|]] | ||
+ | |||
+ | * http://www.ams.org/mathscinet | ||
+ | * http://www.zentralblatt-math.org/zmath/en/ | ||
+ | * http://pythagoras0.springnote.com/ | ||
+ | * [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html] | ||
+ | * http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q= | ||
+ | * http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7= | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>question and answers(Math Overflow)</h5> | ||
+ | |||
+ | * http://mathoverflow.net/search?q= | ||
+ | * http://mathoverflow.net/search?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>blogs</h5> | ||
+ | |||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>experts on the field</h5> | ||
+ | |||
+ | * http://arxiv.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>links</h5> | ||
+ | |||
+ | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
+ | * [http://pythagoras0.springnote.com/pages/1947378 수식표 현 안내] | ||
+ | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | ||
+ | * http://functions.wolfram.com/ |
2010년 4월 4일 (일) 14:15 판
introduction
Define \(w^{2(2k+3)}=1\) and \(z=w+w^{-1}\)
\(p_i(z)=\frac{w^{i+1}-w^{-i-1}}{w-w^{-1}}\) for \( i=1,\cdots, k\)
solution for Nahm's equation is
\(x_i=1-\frac{1}{p_i(z)^2}\).
This gives rise to \(\varphi(2k+3)/2\) solutions, on which the Galois group acts simply transitively.
- \(U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x)\)
recurrence relation
- \(p_{0}(z)=1\)
- \(p_{1}(z)=z\)
- \(p_i(z)^2=1+p_{i-1}(z)p_{i+1}(z)\)
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
articles
[[2010년 books and articles|]]
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
experts on the field