"Finite dimensional representations of Sl(2)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
25번째 줄: 25번째 줄:
  
 
*  integrable weights and Weyl vector<br><math>\omega=\frac{1}{2}\alpha</math><br><math>\rho=\omega</math><br> integrable weights <math>\lambda=n\omega</math><br>
 
*  integrable weights and Weyl vector<br><math>\omega=\frac{1}{2}\alpha</math><br><math>\rho=\omega</math><br> integrable weights <math>\lambda=n\omega</math><br>
*  Weyl-Kac formula<br><math>\operatorname{ch}L(n\omega)=\frac{e^{(n+1)\omega}-e^{-(n+1)\omega}}{e^{\omega}-e^{-\omega}}</math><br>
+
*  Weyl-Kac formula<br><math>\operatorname{ch}L(n\omega)=\frac{e^{(n+1)\omega}-e^{-(n+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{n\omega}+e^{(n-2)\omega}+\cdots+e^{-n\omega}</math><br>
  
 
 
 
 
35번째 줄: 35번째 줄:
 
<h5 style="line-height: 2em; margin: 0px;">Chebyshev polynomial of the 2nd kind</h5>
 
<h5 style="line-height: 2em; margin: 0px;">Chebyshev polynomial of the 2nd kind</h5>
  
* <math>U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x)</math>
+
* <math>U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x)</math><br> U_0[x]=1<br> U_1[x]=2 x<br> U_2[x]=-1+4 x^2<br> U_3[x]=-4 x+8 x^3<br>
 
*  character evaluated at an element of SU(2) with the eigenvalues e^{i\theta}, e^{-i\theta} is given by the Chebyshev polynomials<br><math>U_n(\cos\theta)= \frac{\sin (n+1)\theta}{\sin \theta}</math><br>
 
*  character evaluated at an element of SU(2) with the eigenvalues e^{i\theta}, e^{-i\theta} is given by the Chebyshev polynomials<br><math>U_n(\cos\theta)= \frac{\sin (n+1)\theta}{\sin \theta}</math><br>
* <math>w=e^{i\theta}</math>, <math>z=w+w^{-1}=2\cos\theta</math><br><math>p_i(z)=\frac{w^{i+1}-w^{-i-1}}{w-w^{-1}}</math><br><math>p_{0}(z)=1</math><br><math>p_{1}(z)=z</math><br><math>p_{2}(z)=z^2-1</math><br><math>p_{2}(z)=z^2-1</math><br><math>p_i(z)^2=1+p_{i-1}(z)p_{i+1}(z)</math><br>
+
* <math>w=e^{i\theta}</math>, <math>z=w+w^{-1}=2\cos\theta</math><br><math>p_i(z)=\frac{w^{i+1}-w^{-i-1}}{w-w^{-1}}</math><br><math>p_{0}(z)=1</math><br><math>p_{1}(z)=z</math><br><math>p_{2}(z)=z^2-1</math><br><math>p_{3}(z)=z^3-2z</math><br><math>p_i(z)^2=1+p_{i-1}(z)p_{i+1}(z)</math><br>
  
 
 
 
 
73번째 줄: 73번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103);">encyclopedia</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103);">encyclopedia</h5>
  
 +
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식]
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://www.scholarpedia.org/
 
* http://www.scholarpedia.org/

2010년 4월 9일 (금) 06:36 판

introduction

 

 

character formula
  • Weyl-Kac formula
    \(ch(V)={\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho}) \over e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}\)
  • for trivial representation, we get denominator identity
    \({\sum_{w\in W} (-1)^{\ell(w)}w(e^{\rho}) = e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})^{m_{\alpha}}}\)

 

 

specialization

 

  • Cartan matrix
    \(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\)
  • root system
    \(\Phi=\{\alpha,-\alpha\}\)
  • integrable weights and Weyl vector
    \(\omega=\frac{1}{2}\alpha\)
    \(\rho=\omega\)
    integrable weights \(\lambda=n\omega\)
  • Weyl-Kac formula
    \(\operatorname{ch}L(n\omega)=\frac{e^{(n+1)\omega}-e^{-(n+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{n\omega}+e^{(n-2)\omega}+\cdots+e^{-n\omega}\)

 

 

 

Chebyshev polynomial of the 2nd kind
  • \(U_{n+1}(x) & = 2xU_n(x) - U_{n-1}(x)\)
    U_0[x]=1
    U_1[x]=2 x
    U_2[x]=-1+4 x^2
    U_3[x]=-4 x+8 x^3
  • character evaluated at an element of SU(2) with the eigenvalues e^{i\theta}, e^{-i\theta} is given by the Chebyshev polynomials
    \(U_n(\cos\theta)= \frac{\sin (n+1)\theta}{\sin \theta}\)
  • \(w=e^{i\theta}\), \(z=w+w^{-1}=2\cos\theta\)
    \(p_i(z)=\frac{w^{i+1}-w^{-i-1}}{w-w^{-1}}\)
    \(p_{0}(z)=1\)
    \(p_{1}(z)=z\)
    \(p_{2}(z)=z^2-1\)
    \(p_{3}(z)=z^3-2z\)
    \(p_i(z)^2=1+p_{i-1}(z)p_{i+1}(z)\)

 

 

Catalan numbers
  1. f[n_] := Integrate[(2 Cos[Pi*x])^n*2 (Sin[Pi*x])^2, {x, 0, 1}]
    Table[Simplify[f[2 k]], {k, 1, 10}]
    Table[CatalanNumber[n], {n, 1, 10}]

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

articles

[[2010년 books and articles|]]

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links