"Finite dimensional representations of Sl(2)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
12번째 줄: 12번째 줄:
 
* Cartan matrix<br><math>\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}</math><br>
 
* Cartan matrix<br><math>\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}</math><br>
 
* root system<br><math>\Phi=\{\alpha,-\alpha\}</math><br>
 
* root system<br><math>\Phi=\{\alpha,-\alpha\}</math><br>
 
 
 
  
 
 
 
 
19번째 줄: 17번째 줄:
 
==representation theory==
 
==representation theory==
  
* integrable weights and Weyl vector<br><math>\omega=\frac{1}{2}\alpha</math><br><math>\rho=\omega</math><br>
+
* integrable weights and Weyl vector
* there is a unique k+1 dimensional irreducible module <math>V_k</math> with the highest integrable weight <math>\lambda=k\omega</math><br>
+
:<math>\omega=\frac{1}{2}\alpha, \rho=\omega</math>
 
+
* there is a unique k+1 dimensional irreducible module <math>V_k</math> of highest weight <math>\lambda=k\omega</math>
* [[Weyl-Kac character formula|Weyl-Kac formula]]<br><math>\operatorname{ch}L(k\omega)=\frac{e^{(k+1)\omega}-e^{-(k+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{k\omega}+e^{(k-2)\omega}+\cdots+e^{-k\omega}</math><br>
+
* [[Weyl-Kac character formula]]
 
+
:<math>\operatorname{ch}L(k\omega)=\frac{e^{(k+1)\omega}-e^{-(k+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{k\omega}+e^{(k-2)\omega}+\cdots+e^{-k\omega}</math>
 
 
  
 
+
  
==character formula and Chebyshev polynomial of the 2nd kind==
+
===character formula and Chebyshev polynomial of the 2nd kind===
  
* <math>U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)</math><br>U_0[x]=1<br>U_1[x]=2 x<br>U_2[x]=-1+4 x^2<br>U_3[x]=-4 x+8 x^3<br>
+
* <math>U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)</math>
* character evaluated at an element of SU(2) with the eigenvalues e^{i\theta}, e^{-i\theta} is given by the Chebyshev polynomials<br><math>U_k(\cos\theta)= \frac{\sin (k+1)\theta}{\sin \theta}</math><br>
+
* character evaluated at an element of SU(2) with the eigenvalues $e^{i\theta}, e^{-i\theta}$ is given by the Chebyshev polynomials
* <math>w=e^{i\theta}</math>,<math>z=w+w^{-1}=2\cos\theta</math><br><math>p_k(z)=\frac{w^{k+1}-w^{-k-1}}{w-w^{-1}}</math><br><math>p_{0}(z)=1</math><br><math>p_{1}(z)=z</math><br><math>p_{2}(z)=z^2-1</math><br><math>p_{3}(z)=z^3-2z</math><br><math>p_k(z)^2=1+p_{k-1}(z)p_{k+1}(z)</math><br>
+
:<math>U_k(\cos\theta)= \frac{\sin (k+1)\theta}{\sin \theta}</math>
 +
* <math>w=e^{i\theta}</math>,<math>z=w+w^{-1}=2\cos\theta</math>
 +
* <math>p_k(z)=\frac{w^{k+1}-w^{-k-1}}{w-w^{-1}}</math>
 +
* <math>p_k(z)^2=1+p_{k-1}(z)p_{k+1}(z)</math><br>
  
 
 
 
 
47번째 줄: 47번째 줄:
 
 
 
 
  
==symmetric power of sl(2) representations==
+
===symmetric power of sl(2) representations===
  
 
* q-binomial type formula (Heine formula,[[useful techniques in q-series]])<br><math>\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}</math><br>
 
* q-binomial type formula (Heine formula,[[useful techniques in q-series]])<br><math>\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}</math><br>
 
* the character of j-th symmetric power of V_k is<br><math>\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}</math><br>where the q-analogue of the natural number is defined as <br><math>[n]_{q}=\frac{q^n-q^{-n}}{q-q^{-1}}</math><br>
 
* the character of j-th symmetric power of V_k is<br><math>\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}</math><br>where the q-analogue of the natural number is defined as <br><math>[n]_{q}=\frac{q^n-q^{-n}}{q-q^{-1}}</math><br>
  
 
 
  
(proof)
+
;proof
  
 
Fix a k throughout the argument.
 
Fix a k throughout the argument.
86번째 줄: 85번째 줄:
 
 
 
 
  
==exterior algebra of sl(2) representations==
+
===exterior algebra of sl(2) representations===
  
 
* q-binomial type formula (Gauss formula,[[useful techniques in q-series]][[q-analogue of summation formulas|q-analogue of summation formulas]])
 
* q-binomial type formula (Gauss formula,[[useful techniques in q-series]][[q-analogue of summation formulas|q-analogue of summation formulas]])
92번째 줄: 91번째 줄:
 
* the character of j-th exterior algebra of V_k is :<math>\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}</math><br>
 
* the character of j-th exterior algebra of V_k is :<math>\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}</math><br>
  
 
 
  
(proof)
+
;proof
  
 
analogous to the above. ■
 
analogous to the above. ■
  
 
 
 
 
 
  
 
 
  
 
==Clebsch-Gordan coefficients==
 
==Clebsch-Gordan coefficients==

2013년 12월 14일 (토) 15:21 판

introduction

 

 

specialization

  • Cartan matrix
    \(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\)
  • root system
    \(\Phi=\{\alpha,-\alpha\}\)

 

representation theory

  • integrable weights and Weyl vector

\[\omega=\frac{1}{2}\alpha, \rho=\omega\]

\[\operatorname{ch}L(k\omega)=\frac{e^{(k+1)\omega}-e^{-(k+1)\omega}}{e^{\omega}-e^{-\omega}}=e^{k\omega}+e^{(k-2)\omega}+\cdots+e^{-k\omega}\]


character formula and Chebyshev polynomial of the 2nd kind

  • \(U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x)\)
  • character evaluated at an element of SU(2) with the eigenvalues $e^{i\theta}, e^{-i\theta}$ is given by the Chebyshev polynomials

\[U_k(\cos\theta)= \frac{\sin (k+1)\theta}{\sin \theta}\]

  • \(w=e^{i\theta}\),\(z=w+w^{-1}=2\cos\theta\)
  • \(p_k(z)=\frac{w^{k+1}-w^{-k-1}}{w-w^{-1}}\)
  • \(p_k(z)^2=1+p_{k-1}(z)p_{k+1}(z)\)

 

 

Hermite reciprocity

  • [GW1998]
  • dimension of symmetric algebra and exterior algebra of V_k

 

 

symmetric power of sl(2) representations

  • q-binomial type formula (Heine formula,useful techniques in q-series)
    \(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)
  • the character of j-th symmetric power of V_k is
    \(\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)
    where the q-analogue of the natural number is defined as 
    \([n]_{q}=\frac{q^n-q^{-n}}{q-q^{-1}}\)


proof

Fix a k throughout the argument.

Let \(F_j(q)\) be the character of j-th symmetric power of V_k.

\(F_j(q)=\sum_{m_0,\cdots,m_k}q^{(k-0)m_0+(k-2)m_1+\cdots+(2-k)m_{k-1}+(0-k)m_k}\)

where \(m_0+m_1+\cdots+m_k=j\)

Now consider the generating function

\(F(z,q)=\sum_{j=0}^{\infty}F_j(q)z^j\)

I claim that

\(F(z,q)=\sum_{j=0}^{\infty}F_j(q)z^j=\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}\). 

To prove that see the power series expansion of a factor\[(1-zq^{k-2j})^{-1}=\sum_{m=0}^{\infty}z^mq^{m(k-2j)}\]. Therefore

\(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{m_0,\cdots,m_k}z^{m_0+\cdots+m_k}q^{(k-0)m_0+(k-2)m_1+\cdots+(2-k)m_{k-1}+(0-k)m_k}\)

Now we can easily check

\(\prod_{j=0}^{k}(1-zq^{k-2j})^{-1}=\sum_{j=0}^{\infty}z^j\begin{bmatrix} k+j\\ k\end{bmatrix}_{q}\)■

 

 

exterior algebra of sl(2) representations

\[\prod_{j=0}^{k}(1+zq^{k-2j})=\sum_{j=0}^{k+1}\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}z^j\]

  • the character of j-th exterior algebra of V_k is \[\begin{bmatrix} k+1 \\ j\end{bmatrix}_{q}q^{j(j-1)/2}\]


proof

analogous to the above. ■


Clebsch-Gordan coefficients

 

 

Catalan numbers

  1. f[n_] := Integrate[(2 Cos[Pi*x])^n*2 (Sin[Pi*x])^2, {x, 0, 1}]
    Table[Simplify[f[2 k]], {k, 1, 10}]
    Table[CatalanNumber[n], {n, 1, 10}]

 

 

 

history

 

 

related items

 

 

encyclopedia


 

 

books

  • [GW1998]Goodman and Wallach,Representations and invariants of the classical groups


articles

  • Bacry, Henri. 1987. “SL(2,C), SU(2), and Chebyshev Polynomials.” Journal of Mathematical Physics 28 (10) (October 1): 2259–2267. doi:10.1063/1.527759.