"Basic hypergeometric series"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
 (피타고라스님이 이 페이지의 이름을 3 q-series로 바꾸었습니다.)  | 
				|||
| 37번째 줄: | 37번째 줄: | ||
http://www.springerlink.com/content/j22163577187156l/  | http://www.springerlink.com/content/j22163577187156l/  | ||
| − | |||
| − | |||
| 44번째 줄: | 42번째 줄: | ||
==== 하위페이지 ====  | ==== 하위페이지 ====  | ||
| − | * [[3 q-series|  | + | * [[3 q-series]]<br>  | 
| − | ** [[  | + | ** [[Bailey pair and lemma]]<br>  | 
| − | ** [[Bailey   | + | *** [[6080259|Bailey chain]]<br>  | 
| − | ** [[  | + | *** [[Bailey lattice]]<br>  | 
| + | *** [[sources of Bailey pairs|Bailey pairs from CFT]]<br>  | ||
| + | ** [[finitized q-series identity]]<br>  | ||
** [[integer partitions]]<br>  | ** [[integer partitions]]<br>  | ||
| − | ** [[  | + | ** [[q-analogue of summation formulas]]<br>  | 
| − | ** [[  | + | ** [[Slater list]]<br>  | 
| − | ** [[  | + | *** [[6078351|Slater 02]]<br>  | 
| − | *** [[  | + | *** [[5960113|Slater 08]]<br>  | 
| + | *** [[5984287|Slater 14]]<br>  | ||
*** [[5974537|Slater 18]]<br>  | *** [[5974537|Slater 18]]<br>  | ||
| + | *** [[Slater 34]]<br>  | ||
| + | *** [[Slater 36]]<br>  | ||
| + | *** [[Slater 37]]<br>  | ||
| + | *** [[Slater 47]]<br>  | ||
| + | *** [[Slater 83]]<br>  | ||
| + | *** [[Slater 86]]<br>  | ||
*** [[Slater 92]]<br>  | *** [[Slater 92]]<br>  | ||
| + | *** [[Slater 98]]<br>  | ||
| + | ** [[useful techniques in q-series]]<br>  | ||
| + | ** [[6162505|Vandermonde convolution]]<br>  | ||
2010년 9월 25일 (토) 22:51 판
theory
- 오일러의 오각수정리(pentagonal number theorem)
\((1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots\) - 오일러공식
\(\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\) 
q-Pochhammer
- partition generating function
 
- Series[1/QPochhammer[q, q], {q, 0, 100}]
 
- Dedekind eta
 
- Series[QPochhammer[q, q], {q, 0, 100}]
 
q-hypergeometric series
\(\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})\)
- f[q_] := QHypergeometricPFQ[{}, {}, q, -q^(1/2)]
g[q_] := Exp[-(Pi^2/(12 Log[q])) + Log[q]/48]
Table[N[f[1 - 1/10^(i)]/g[1 - 1/10^(i)], 50], {i, 1, 5}] // TableForm 
http://www.springerlink.com/content/j22163577187156l/