"Basic hypergeometric series"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				imported>Pythagoras0   | 
				||
| 80번째 줄: | 80번째 줄: | ||
*** [[Slater 98]]<br>  | *** [[Slater 98]]<br>  | ||
** [[useful techniques in q-series]]<br>  | ** [[useful techniques in q-series]]<br>  | ||
| + | [[분류:math and physics]]  | ||
[[분류:math and physics]]  | [[분류:math and physics]]  | ||
2012년 10월 29일 (월) 09:54 판
theory
- 오일러의 오각수정리(pentagonal number theorem)
\((1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots\) - 오일러공식
\(\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\) 
q-Pochhammer
- partition generating function
 
- Series[1/QPochhammer[q, q], {q, 0, 100}]
 
- Dedekind eta
 
- Series[QPochhammer[q, q], {q, 0, 100}]
 
q-hypergeometric series
\(\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})\)
- f[q_] := QHypergeometricPFQ[{}, {}, q, -q^(1/2)]
g[q_] := Exp[-(Pi^2/(12 Log[q])) + Log[q]/48]
Table[N[f[1 - 1/10^(i)]/g[1 - 1/10^(i)], 50], {i, 1, 5}] // TableForm 
KdV Hirota polynomials
- Series[1/QPochhammer[q, q^2] - 1/QPochhammer[q^2, q^4], {q, 0, 100}]
 - KdV equation
 
- asymptotic analysis of basic hypergeometric series
 - hypergeometric functions and representation theory
 
- [http://www.springerlink.com/content/j22163577187156l/ Common extension of bilateral series for Andrews’ q-Bailey and q-Gauss sums
 
Wenchang Chu and Chenying Wang]