"Basic hypergeometric series"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  | 
				imported>Pythagoras0   (→하위페이지)  | 
				||
| 57번째 줄: | 57번째 줄: | ||
| − | ==   | + | == related items ==  | 
| − | + | * [[Basic hypergeometric series]]  | |
| − | * [[  | ||
* [[Bailey pair and lemma]]  | * [[Bailey pair and lemma]]  | ||
* [[Bailey lattice]]  | * [[Bailey lattice]]  | ||
2017년 12월 7일 (목) 21:57 판
theory
- 오일러의 오각수정리(pentagonal number theorem)
\((1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots\) - 오일러공식
\(\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\) 
q-Pochhammer
- partition generating function
 
- Series[1/QPochhammer[q, q], {q, 0, 100}]
 
- Dedekind eta
 
- Series[QPochhammer[q, q], {q, 0, 100}]
 
q-hypergeometric series
\(\sum_{n\geq 0}^{\infty}\frac{q^{n^2/2}}{(q)_n}\sim \exp(\frac{\pi^2}{12t}-\frac{t}{48})\)
- f[q_] := QHypergeometricPFQ[{}, {}, q, -q^(1/2)]
g[q_] := Exp[-(Pi^2/(12 Log[q])) + Log[q]/48]
Table[N[f[1 - 1/10^(i)]/g[1 - 1/10^(i)], 50], {i, 1, 5}] // TableForm 
KdV Hirota polynomials
- Series[1/QPochhammer[q, q^2] - 1/QPochhammer[q^2, q^4], {q, 0, 100}]
 - KdV equation
 
- asymptotic analysis of basic hypergeometric series
 - hypergeometric functions and representation theory
 
- [http://www.springerlink.com/content/j22163577187156l/ Common extension of bilateral series for Andrews’ q-Bailey and q-Gauss sums
 
Wenchang Chu and Chenying Wang]
- Basic hypergeometric series
 - Bailey pair and lemma
 - Bailey lattice
 - sources of Bailey pairs
 - determinantal identities and Airy kernel
 - elliptic hypergeometric series
 - finitized q-series identity
 - integer partitions
 - q-analogue of summation formulas
 - Slater list
 - Slater 31
 - Slater 32
 - Slater 34
 - Slater 36
 - Slater 37
 - Slater 47
 - Slater 83
 - Slater 86
 - Slater 92
 - Slater 98
 - useful techniques in q-series