"딥 러닝"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(section 'articles' updated)
imported>Pythagoras0
(section 'articles' updated)
5번째 줄: 5번째 줄:
  
 
==articles==
 
==articles==
 +
* Jakub Sygnowski, Henryk Michalewski, Learning from the memory of Atari 2600, arXiv:1605.01335 [cs.LG], May 04 2016, http://arxiv.org/abs/1605.01335
 
* Kenny Young, Ryan Hayward, Gautham Vasan, Neurohex: A Deep Q-learning Hex Agent, arXiv:1604.07097 [cs.AI], April 24 2016, http://arxiv.org/abs/1604.07097
 
* Kenny Young, Ryan Hayward, Gautham Vasan, Neurohex: A Deep Q-learning Hex Agent, arXiv:1604.07097 [cs.AI], April 24 2016, http://arxiv.org/abs/1604.07097
 
* Xiaoxiao Guo, Satinder Singh, Richard Lewis, Honglak Lee, Deep Learning for Reward Design to Improve Monte Carlo Tree Search in ATARI Games, arXiv:1604.07095 [cs.AI], April 24 2016, http://arxiv.org/abs/1604.07095
 
* Xiaoxiao Guo, Satinder Singh, Richard Lewis, Honglak Lee, Deep Learning for Reward Design to Improve Monte Carlo Tree Search in ATARI Games, arXiv:1604.07095 [cs.AI], April 24 2016, http://arxiv.org/abs/1604.07095

2016년 5월 15일 (일) 17:58 판

introduction

  • Deep learning algorithms have been shown to perform extremely well on many classical machine learning problems.


articles

memo

  • Kristinn R. Thórisson, Jordi Bieger, Thröstur Thorarensen, Jóna S. Sigurðardóttir, Bas R. Steunebrink, Why Artificial Intelligence Needs a Task Theory --- And What It Might Look Like, arXiv:1604.04660 [cs.AI], April 15 2016, http://arxiv.org/abs/1604.04660