"Degrees and exponents"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
4번째 줄: | 4번째 줄: | ||
* eigenvalues of incidence matrices of Dynkin diagram<br> | * eigenvalues of incidence matrices of Dynkin diagram<br> | ||
* http://pythagoras0.springnote.com/pages/1938682/attachments/3170605 | * http://pythagoras0.springnote.com/pages/1938682/attachments/3170605 | ||
+ | |||
==Cartan matrix== | ==Cartan matrix== | ||
11번째 줄: | 12번째 줄: | ||
* <math>m_{i}</math> is called the exponents<br> | * <math>m_{i}</math> is called the exponents<br> | ||
* <math>d_{i}=m_{i}+1</math> is called a degree<br> | * <math>d_{i}=m_{i}+1</math> is called a degree<br> | ||
+ | |||
==adjacency matrix== | ==adjacency matrix== | ||
16번째 줄: | 18번째 줄: | ||
* h : Coxeter number<br> | * h : Coxeter number<br> | ||
* eigenvalue <math>2\cos(\pi l_n/h)</math><br> | * eigenvalue <math>2\cos(\pi l_n/h)</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | ==degree and exponent of simple Lie algebra== | ||
+ | |||
+ | * appears in invariant theory<br> | ||
+ | * can also be seen as eigenvalues of Cartan matrix or incidence matrix of the Dynkin diagram<br> | ||
+ | * for incidence matrix, the eigenvalues are given by<br><math>2\cos(\pi l_n/h)</math><br> where h is the Coxeter number and <math>l_i</math>'s are the exponents<br> | ||
+ | * example : A4 Cartan matrix has the Coxeter number 5<br><math>\left( \begin{array}{cccc} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{array} \right)</math><br> incidence matrix<br><math>\left( \begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right)</math><br> eigenvalues of the incidence matrix<br><math>\left\{\frac{1}{2} \left(-1-\sqrt{5}\right),\frac{1}{2} \left(1+\sqrt{5}\right),\frac{1}{2} \left(1-\sqrt{5}\right),\frac{1}{2} \left(-1+\sqrt{5}\right)\right\}</math><br> you can evalutate the following in mathematica to get the same set<br> | ||
+ | *# Table[2 Cos[Pi*l/5], {l, 1, 4}]<br> <br> | ||
+ | |||
+ | |||
2013년 1월 27일 (일) 15:23 판
introduction
- eigenvalues of Cartan matrices
- eigenvalues of incidence matrices of Dynkin diagram
- http://pythagoras0.springnote.com/pages/1938682/attachments/3170605
Cartan matrix
- h : Coxeter number
- eigenvalue
\(4\sin^2(\frac{m_{i}\pi}{2h})\) - \(m_{i}\) is called the exponents
- \(d_{i}=m_{i}+1\) is called a degree
adjacency matrix
- h : Coxeter number
- eigenvalue \(2\cos(\pi l_n/h)\)
degree and exponent of simple Lie algebra
- appears in invariant theory
- can also be seen as eigenvalues of Cartan matrix or incidence matrix of the Dynkin diagram
- for incidence matrix, the eigenvalues are given by
\(2\cos(\pi l_n/h)\)
where h is the Coxeter number and \(l_i\)'s are the exponents - example : A4 Cartan matrix has the Coxeter number 5
\(\left( \begin{array}{cccc} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{array} \right)\)
incidence matrix
\(\left( \begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right)\)
eigenvalues of the incidence matrix
\(\left\{\frac{1}{2} \left(-1-\sqrt{5}\right),\frac{1}{2} \left(1+\sqrt{5}\right),\frac{1}{2} \left(1-\sqrt{5}\right),\frac{1}{2} \left(-1+\sqrt{5}\right)\right\}\)
you can evalutate the following in mathematica to get the same set
- Table[2 Cos[Pi*l/5], {l, 1, 4}]
- Table[2 Cos[Pi*l/5], {l, 1, 4}]
- Table[Simplify[2 Cos[Pi*l/5]], {l, 1, 4}]
Table[Simplify[4 Sin[Pi*l/10]^2], {l, 1, 4}]
homological algebraic characterization
For a s.s. Lie algebra L
(a)H'(L) is a free super- commutative algebra with homogeneous generator in degrees 2m_1+1,\cdots,2m_l+1
history
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Coxeter_number
- http://en.wikipedia.org/wiki/
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
articles
- 논문정리
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html[1]
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/