"Degrees and exponents"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
51번째 줄: 51번째 줄:
 
* [[Coxeter groups and reflection groups]]
 
* [[Coxeter groups and reflection groups]]
 
* [[Macdonald constant term conjecture]]
 
* [[Macdonald constant term conjecture]]
 +
* [[Poincare Series of Coxeter Groups]]
 +
  
  
61번째 줄: 63번째 줄:
  
  
==articles==
 
* Macdonald, I. G. 1972. “The Poincaré Series of a Coxeter Group.” Mathematische Annalen 199 (3) (September 1): 161–174. doi:[http://dx.doi.org/10.1007/BF01431421 10.1007/BF01431421]
 
  
 
[[분류:개인노트]]
 
[[분류:개인노트]]

2013년 7월 5일 (금) 06:23 판

introduction

  • eigenvalues of Cartan matrices
  • eigenvalues of incidence matrices of Dynkin diagram
  • 틀:수학노트


Cartan matrix

  • h : Coxeter number
  • eigenvalue \(4\sin^2(m_{i}\pi/2h)\)
  • \(m_{i}\) is called the exponents
  • \(d_{i}=m_{i}+1\) is called a degree


adjacency matrix

  • h : Coxeter number
  • eigenvalue \(2\cos(\pi l_n/h)\)


degree and exponent of simple Lie algebra

  • appears in invariant theory
  • can also be seen as eigenvalues of Cartan matrix or incidence matrix of the Dynkin diagram
  • for incidence matrix, the eigenvalues are given by\[2\cos(\pi l_n/h)\] where h is the Coxeter number and \(l_i\)'s are the exponents

example

  • A4 Cartan matrix has the Coxeter number 5

\[\left( \begin{array}{cccc} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{array} \right)\]

  • incidence matrix\[\left( \begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right)\]
  • eigenvalues of the incidence matrix\[\left\{\frac{1}{2} \left(-1-\sqrt{5}\right),\frac{1}{2} \left(1+\sqrt{5}\right),\frac{1}{2} \left(1-\sqrt{5}\right),\frac{1}{2} \left(-1+\sqrt{5}\right)\right\}\]


homological algebraic characterization

  • For a semisimple. Lie algebra L
  • $H^{\bullet}(L)$ is a free super-commutative algebra with homogeneous generator in degrees $2m_1+1,\cdots,2m_l+1$



history



related items


computational resource


encyclopedia