"Degrees and exponents"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
4번째 줄: 4번째 줄:
 
*  eigenvalues of incidence matrices of Dynkin diagram
 
*  eigenvalues of incidence matrices of Dynkin diagram
 
* {{수학노트|url=유한반사군과_콕세터군(finite_reflection_groups_and_Coxeter_groups)}}
 
* {{수학노트|url=유한반사군과_콕세터군(finite_reflection_groups_and_Coxeter_groups)}}
 +
 +
;thm (Kostant, 1959)
 +
Let $m_1,\cdots,m_n$ be the exponents and $k_1,\cdots,k_n$ be the degrees arranged in an increasing order. Then
 +
$$
 +
m_i=k_i-1.
 +
$$
 +
Thus
 +
$$
 +
\sum_{}m_i=\sum_{}(k_i-1)=\frac{nh}{2}=|\Phi^{+}|
 +
$$
 +
* conjectured by Coxeter
  
  

2014년 6월 26일 (목) 00:26 판

introduction

  • eigenvalues of Cartan matrices
  • eigenvalues of incidence matrices of Dynkin diagram
  • 틀:수학노트
thm (Kostant, 1959)

Let $m_1,\cdots,m_n$ be the exponents and $k_1,\cdots,k_n$ be the degrees arranged in an increasing order. Then $$ m_i=k_i-1. $$ Thus $$ \sum_{}m_i=\sum_{}(k_i-1)=\frac{nh}{2}=|\Phi^{+}| $$

  • conjectured by Coxeter


Cartan matrix

  • h : Coxeter number
  • eigenvalue \(4\sin^2(m_{i}\pi/2h)\)
  • \(m_{i}\) is called the exponents
  • \(d_{i}=m_{i}+1\) is called a degree


adjacency matrix

  • h : Coxeter number
  • eigenvalue \(2\cos(\pi m_i/h)\)


degree and exponent of simple Lie algebra

  • appears in invariant theory
  • can also be seen as eigenvalues of Cartan matrix or incidence matrix of the Dynkin diagram
  • for incidence matrix, the eigenvalues are given by\[2\cos(\pi m_i/h)\] where h is the Coxeter number and \(m_i\)'s are the exponents
  • if we denote the exponents by $m_i$, $1\le m_i < h$, then $m_i+m_{r-i+1}=h$ where $r$ is the rank


example

  • A4 Cartan matrix has the Coxeter number 5

\[\left( \begin{array}{cccc} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{array} \right)\]

  • incidence matrix\[\left( \begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right)\]
  • eigenvalues of the incidence matrix\[\left\{\frac{1}{2} \left(-1-\sqrt{5}\right),\frac{1}{2} \left(1+\sqrt{5}\right),\frac{1}{2} \left(1-\sqrt{5}\right),\frac{1}{2} \left(-1+\sqrt{5}\right)\right\}\]


homological algebraic characterization

  • For a semisimple. Lie algebra L
  • $H^{\bullet}(L)$ is a free super-commutative algebra with homogeneous generator in degrees $2m_1+1,\cdots,2m_l+1$



history



related items


computational resource


encyclopedia


articles

  • Burns, John M., and Ruedi Suter. 2012. “Power Sums of Coxeter Exponents.” Advances in Mathematics 231 (3-4): 1291–1307. doi:10.1016/j.aim.2012.06.020.
  • Kostant, Bertram. “The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group.” American Journal of Mathematics 81 (1959): 973–1032.
  • Coleman, A. J. “The Betti Numbers of the Simple Lie Groups.” Canadian Journal of Mathematics. Journal Canadien de Mathématiques 10 (1958): 349–56.