"Rank of partition and mock theta conjecture"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5>order 3 Ramanujan mock theta function</h5>
 
<h5>order 3 Ramanujan mock theta function</h5>
  
* <math>f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} {q^{n^2}\over (-q;q)_n^2}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}</math><br>[http://www.research.att.com/%7Enjas/sequences/A000025 http://www.research.att.com/~njas/sequences/A000025]<br>[http://www.research.att.com/%7Enjas/sequences/b000025.txt http://www.research.att.com/~njas/sequences/b000025.txt]<br>
+
* <math>f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}</math>
 +
*  coefficients<br> 1, 1, -2, 3, -3, 3, -5, 7, -6, 6, -10, 12, -11, 13, -17, 20, -21, 21, -27, 34, -33, 36, -46, 51, -53, 58, -68, 78, -82, 89, -104, 118, -123, 131, -154, 171, -179, 197, -221, 245, -262, 279, -314, 349, -369, 398, -446, 486, -515, 557, -614, 671, -715, 767, -845, 920, -977, 1046, -1148, 1244<br>[http://www.research.att.com/%7Enjas/sequences/A000025 http://www.research.att.com/~njas/sequences/A000025]<br>[http://www.research.att.com/%7Enjas/sequences/b000025.txt http://www.research.att.com/~njas/sequences/b000025.txt]<br>
  
 
 
 
 
10번째 줄: 11번째 줄:
  
 
* '''[Dragonette1952]''' and '''[Andrews1966]'''
 
* '''[Dragonette1952]''' and '''[Andrews1966]'''
*  rank of partition<br> 분할의 rank = 분할에서 가장 큰 수 - 분할의 크기<br> 9의 분할인 {7,1,1}의 경우, rank=7-3=4<br> 9의 분할인 {4,3,1,1}의 경우, rank=4-4=0<br>
+
* concerns the question of partitions with even rank and odd rank
 +
*  rank of partition =  largest part - number of parts<br> 9의 분할인 {7,1,1}의 경우, rank=7-3=4<br> 9의 분할인 {4,3,1,1}의 경우, rank=4-4=0<br>
 
* <math>N_e(n), N_o(n)</math> number of partition with even rank and odd rank
 
* <math>N_e(n), N_o(n)</math> number of partition with even rank and odd rank
 
* <math>p(n)=N_e(n)+N_o(n)</math>
 
* <math>p(n)=N_e(n)+N_o(n)</math>
 
* <math>\alpha(n)=N_e(n)-N_o(n)</math>
 
* <math>\alpha(n)=N_e(n)-N_o(n)</math>
 
*  this is in fact the coefficient of mock theta function<br><math>f(q) = \sum_{n\ge 0} \alpha(n)q^n</math><br>
 
*  this is in fact the coefficient of mock theta function<br><math>f(q) = \sum_{n\ge 0} \alpha(n)q^n</math><br>
* thus we need modularity of f(q) to get exact formula for <math>\alpha(n)</math> as <math>p(n)</math> obtained by the circle method
+
* thus we need modularity of f(q) to get exact formula for <math>\alpha(n)</math> as <math>p(n)</math> was obtained by the circle method
  
 
 
 
 
37번째 줄: 39번째 줄:
 
<h5>generalization</h5>
 
<h5>generalization</h5>
  
 
+
* crank
  
 
 
 
 

2010년 3월 3일 (수) 18:40 판

order 3 Ramanujan mock theta function
  • \(f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}\)
  • coefficients
    1, 1, -2, 3, -3, 3, -5, 7, -6, 6, -10, 12, -11, 13, -17, 20, -21, 21, -27, 34, -33, 36, -46, 51, -53, 58, -68, 78, -82, 89, -104, 118, -123, 131, -154, 171, -179, 197, -221, 245, -262, 279, -314, 349, -369, 398, -446, 486, -515, 557, -614, 671, -715, 767, -845, 920, -977, 1046, -1148, 1244
    http://www.research.att.com/~njas/sequences/A000025
    http://www.research.att.com/~njas/sequences/b000025.txt

 

 

Andrews-Dragonette
  • [Dragonette1952] and [Andrews1966]
  • concerns the question of partitions with even rank and odd rank
  • rank of partition =  largest part - number of parts
    9의 분할인 {7,1,1}의 경우, rank=7-3=4
    9의 분할인 {4,3,1,1}의 경우, rank=4-4=0
  • \(N_e(n), N_o(n)\) number of partition with even rank and odd rank
  • \(p(n)=N_e(n)+N_o(n)\)
  • \(\alpha(n)=N_e(n)-N_o(n)\)
  • this is in fact the coefficient of mock theta function
    \(f(q) = \sum_{n\ge 0} \alpha(n)q^n\)
  • thus we need modularity of f(q) to get exact formula for \(\alpha(n)\) as \(p(n)\) was obtained by the circle method

 

 

harmonic Maass form of weight 1/2
  • Zweger's completion

 

 

construction of the Maass-Poincare series

 

 

generalization
  • crank

 

 

history

 

 

related items

 

 

books

 

encyclopedia

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

articles[1]

 

 

experts on the field

 

 

TeX