"Rank of partition and mock theta conjecture"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 rank of partition and mock theta conjecture로 바꾸었습니다.) |
|||
112번째 줄: | 112번째 줄: | ||
* [http://dx.doi.org/10.1007/s00222-005-0493-5 The f(q) mock theta function conjecture and partition ranks] Kathrin Bringmann and Ken Ono, Inventiones Mathematicae Volume 165, Number 2, 2006<br> | * [http://dx.doi.org/10.1007/s00222-005-0493-5 The f(q) mock theta function conjecture and partition ranks] Kathrin Bringmann and Ken Ono, Inventiones Mathematicae Volume 165, Number 2, 2006<br> | ||
− | * [http://www.ingentaconnect.com/content/klu/rama/2003/00000007/F0030001/05142410 Partitions : at the interface of q-series and modular forms] | + | * [http://www.ingentaconnect.com/content/klu/rama/2003/00000007/F0030001/05142410 Partitions : at the interface of q-series and modular forms] Andrews, George E., 2003<br> |
− | |||
* '''[Dragonette1952]'''[http://dx.doi.org/10.2307%2F1990714 Some asymptotic formulae for the mock theta series of Ramanujan]<br> | * '''[Dragonette1952]'''[http://dx.doi.org/10.2307%2F1990714 Some asymptotic formulae for the mock theta series of Ramanujan]<br> | ||
119번째 줄: | 118번째 줄: | ||
* '''[Andrews1966]'''[http://dx.doi.org/10.2307%2F2373202 On the theorems of Watson and Dragonette for Ramanujan's mock theta functions]<br> | * '''[Andrews1966]'''[http://dx.doi.org/10.2307%2F2373202 On the theorems of Watson and Dragonette for Ramanujan's mock theta functions]<br> | ||
** Andrews, George E. (1966), American Journal of Mathematics 88: 454–490 | ** Andrews, George E. (1966), American Journal of Mathematics 88: 454–490 | ||
+ | |||
+ | 1988 Hickerson | ||
+ | |||
+ | |||
+ | |||
+ | * <br> | ||
+ | * <cite class="" id="CITEREFWatson1936" style="line-height: 2em; font-style: normal;">Watson, G. N. (1936), "The Final Problem : An Account of the Mock Theta Functions", <em style="line-height: 2em;">J. London Math. Soc.</em> '''11''': 55–80, [http://en.wikipedia.org/wiki/Digital_object_identifier doi]:[http://dx.doi.org/10.1112%2Fjlms%2Fs1-11.1.55 10.1112/jlms/s1-11.1.55]</cite> | ||
+ | * <cite class="" id="CITEREFWatson1937" style="line-height: 2em; font-style: normal;">Watson, G. N. (1937), "The Mock Theta Functions (2)", <em style="line-height: 2em;">Proc. London Math. Soc.</em> '''s2-42''': 274–304, [http://en.wikipedia.org/wiki/Digital_object_identifier doi]:[http://dx.doi.org/10.1112%2Fplms%2Fs2-42.1.274 10.1112/plms/s2-42.1.274]</cite> | ||
+ | * | ||
+ | * George E. Andrews and F. G. Garvan, [http://dx.doi.org/10.1016/0001-8708%2889%2990070-4 Ramanujan's “Lost” Notebook VI: The mock theta conjectures] 1989<br> | ||
+ | * Hickerson, Dean, <cite class="" id="CITEREFHickerson1988" style="line-height: 2em; font-style: normal;">A proof of the mock theta conjectures</cite> (1988), <cite style="line-height: 2em; font-style: normal;"><em style="line-height: 2em;">[http://en.wikipedia.org/wiki/Inventiones_Mathematicae Inventiones Mathematicae]</em> '''94''' (3): 639–660, [http://en.wikipedia.org/wiki/Digital_object_identifier doi]:[http://dx.doi.org/10.1007%2FBF01394279 10.1007/BF01394279], [http://en.wikipedia.org/wiki/Mathematical_Reviews MR][http://www.ams.org/mathscinet-getitem?mr=969247 969247], [http://en.wikipedia.org/wiki/International_Standard_Serial_Number ISSN] [http://worldcat.org/issn/0020-9910 0020-9910]</cite> | ||
+ | |||
* [[2010년 books and articles|논문정리]] | * [[2010년 books and articles|논문정리]] | ||
* http://www.ams.org/mathscinet | * http://www.ams.org/mathscinet |
2012년 8월 26일 (일) 14:18 판
order 3 Ramanujan mock theta function
- 3rd order mock theta functions
- \(f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}\)
- coefficients
1, 1, -2, 3, -3, 3, -5, 7, -6, 6, -10, 12, -11, 13, -17, 20, -21, 21, -27, 34, -33, 36, -46, 51, -53, 58, -68, 78, -82, 89, -104, 118, -123, 131, -154, 171, -179, 197, -221, 245, -262, 279, -314, 349, -369, 398, -446, 486, -515, 557, -614, 671, -715, 767, -845, 920, -977, 1046, -1148, 1244
http://www.research.att.com/~njas/sequences/A000025
http://www.research.att.com/~njas/sequences/b000025.txt - use mathematica 'integer partitions' or the following
- Series[(1 + 4 Sum[(-1)^n q^(n (3 n + 1)/2)/(1 + q^n), {n, 1, 10}])/
Sum[(-1)^n q^(n (3 n + 1)/2), {n, -8, 8}], {q, 0, 100}]
Andrews-Dragonette
- [Dragonette1952] and [Andrews1966]
- concerns the question of partitions with even rank and odd rank
- rank of partition = largest part - number of parts
9의 분할인 {7,1,1}의 경우, rank=7-3=4
9의 분할인 {4,3,1,1}의 경우, rank=4-4=0 - \(N_e(n), N_o(n)\) number of partition with even rank and odd rank
- \(p(n)=N_e(n)+N_o(n)\)
- \(\alpha(n)=N_e(n)-N_o(n)\)
- this is in fact the coefficient of mock theta function
\(f(q) = \sum_{n\ge 0} \alpha(n)q^n\) - thus we need modularity of f(q) to get exact formula for \(\alpha(n)\) as \(p(n)\) was obtained by the circle method
harmonic Maass form of weight 1/2
- Zweger's completion
construction of the Maass-Poincare series
generalization
- crank
history
books
- 찾아볼 수학책
- http://gigapedia.info/1/mock+theta
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
blogs
articles
- The f(q) mock theta function conjecture and partition ranks Kathrin Bringmann and Ken Ono, Inventiones Mathematicae Volume 165, Number 2, 2006
- Partitions : at the interface of q-series and modular forms Andrews, George E., 2003
- [Dragonette1952]Some asymptotic formulae for the mock theta series of Ramanujan
- Dragonette, Leila A. (1952), Transactions of the American Mathematical Society 72: 474–500
- [Andrews1966]On the theorems of Watson and Dragonette for Ramanujan's mock theta functions
- Andrews, George E. (1966), American Journal of Mathematics 88: 454–490
1988 Hickerson
-
- Watson, G. N. (1936), "The Final Problem : An Account of the Mock Theta Functions", J. London Math. Soc. 11: 55–80, doi:10.1112/jlms/s1-11.1.55
- Watson, G. N. (1937), "The Mock Theta Functions (2)", Proc. London Math. Soc. s2-42: 274–304, doi:10.1112/plms/s2-42.1.274
- George E. Andrews and F. G. Garvan, Ramanujan's “Lost” Notebook VI: The mock theta conjectures 1989
- Hickerson, Dean, A proof of the mock theta conjectures (1988), Inventiones Mathematicae 94 (3): 639–660, doi:10.1007/BF01394279, MR969247, ISSN 0020-9910
- 논문정리
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/10.1007/s00222-005-0493-5
experts on the field