"Gauge theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
4번째 줄: | 4번째 줄: | ||
* gauge invariance 란 measurement에 있어서의 invariance를 말함 | * gauge invariance 란 measurement에 있어서의 invariance를 말함 | ||
* Lagrangian should be gauge invariant. | * Lagrangian should be gauge invariant. | ||
− | |||
− | |||
54번째 줄: | 52번째 줄: | ||
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">3d Chern-Simons theory</h5> | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">3d Chern-Simons theory</h5> | ||
− | + | * 3d Chern-Simons theory on <math>\Sigma\times \mathbb R^{1}</math> with gauge choice <math>A_0=0</math> is the moduli space of flat connections on <math>\Sigma</math>.<br> | |
+ | * analogy with class field theory<br> | ||
+ | * replace <math>\Sigma</math> by <math>spec O_K</math><br> | ||
+ | * then flat connection on <math>spec O_K</math> is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)<br> | ||
+ | * Now from An's article, <br> | ||
86번째 줄: | 88번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">참고할만한 자료</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">참고할만한 자료</h5> | ||
+ | * <br> | ||
* http://www.zentralblatt-math.org/zmath/en/ | * http://www.zentralblatt-math.org/zmath/en/ | ||
− | |||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/principal_bundle | * http://en.wikipedia.org/wiki/principal_bundle | ||
+ | * http://en.wikipedia.org/wiki/Connection_(vector_bundle) | ||
* http://viswiki.com/en/ | * http://viswiki.com/en/ | ||
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q= | * http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q= |
2009년 9월 25일 (금) 15:19 판
meaning of the gague invariance
- gauge = measure
- gauge invariance 란 measurement에 있어서의 invariance를 말함
- Lagrangian should be gauge invariant.
examples of renormalizable gauge theory
Abelian gauge theory
- abelian gauge theory has a duality
Non-Abelian gauge theory
differential geometry formulation
- manifold \(\mathbb R^{1,3}\) and having a vector bundle gives a connection
- connection \(A\) = special kind of 1-form
- \(dA\) = 2-form which measures the electromagnetic charge
- Then the Chern class measures the magnetic charge.
Principal G-bundle
3d Chern-Simons theory
- 3d Chern-Simons theory on \(\Sigma\times \mathbb R^{1}\) with gauge choice \(A_0=0\) is the moduli space of flat connections on \(\Sigma\).
- analogy with class field theory
- replace \(\Sigma\) by \(spec O_K\)
- then flat connection on \(spec O_K\) is given by Homomorphism group the absolute Galois group Gal(\barQ/K)->U(1)
- Now from An's article,
메모
관련된 다른 주제들
표준적인 도서 및 추천도서
- 찾아볼 수학책
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
참고할만한 자료
-
- http://www.zentralblatt-math.org/zmath/en/
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/principal_bundle
- http://en.wikipedia.org/wiki/Connection_(vector_bundle)
- http://viswiki.com/en/
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
이미지 검색
동영상
관련기사
네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=