"Verma modules"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==introduction== * <math>V=\oplus_{\lambda\in\mathbb{F}}V_{\lambda}</math>, <math>V_{\lambda}=\{v\in V|Hv=\lambda v\}</math> ==infinite in both direction== * How to construct a repr...)
 
imported>Pythagoras0
7번째 줄: 7번째 줄:
 
===brute force===
 
===brute force===
 
* impose the following conditions
 
* impose the following conditions
:<math>H v_j=(\lambda -2j)v_j</math>
+
:<math>H v_j=c_j v_j</math>
:<math>F v_j=f_jv_{j+1}</math>
+
:<math>F v_j=b_jv_{j+1}</math>
:<math>E v_j=e_jv_{j-1}</math>
+
:<math>E v_j=a_jv_{j-1}</math>
* as long as $f_j e_{j+1}-f_{j-1} e_{j}=\lambda -2j$ is satisfied, we get a $U$-module structure on the space spanned by <math>\{v_j|j\in \mathbb{Z}\}</math>
+
* we get the following conditions
 
+
$$
 +
\begin{align}
 +
a_j b_{j-1}-a_{j+1} b_j+c_j=0 \\
 +
a_j \left(c_{j-1}-c_j-2\right)=0\\
 +
b_j \left(-c_j+c_{j+1}+2\right)=0
 +
\end{align}
 +
$$
 +
* Fix $c_j=\lambda-2j$. Then as long as $b_j a_{j+1}-b_{j-1} a_{j}=\lambda -2j$ is satisfied, we get a $U$-module structure on the space spanned by <math>\{v_j|j\in \mathbb{Z}\}</math>
  
 
===symmetrical choice===
 
===symmetrical choice===

2013년 4월 13일 (토) 09:04 판

introduction

  • \(V=\oplus_{\lambda\in\mathbb{F}}V_{\lambda}\), \(V_{\lambda}=\{v\in V|Hv=\lambda v\}\)


infinite in both direction

  • How to construct a representation with basis \(\{v_j|j\in \mathbb{Z}\}\)

brute force

  • impose the following conditions

\[H v_j=c_j v_j\] \[F v_j=b_jv_{j+1}\] \[E v_j=a_jv_{j-1}\]

  • we get the following conditions

$$ \begin{align} a_j b_{j-1}-a_{j+1} b_j+c_j=0 \\ a_j \left(c_{j-1}-c_j-2\right)=0\\ b_j \left(-c_j+c_{j+1}+2\right)=0 \end{align} $$

  • Fix $c_j=\lambda-2j$. Then as long as $b_j a_{j+1}-b_{j-1} a_{j}=\lambda -2j$ is satisfied, we get a $U$-module structure on the space spanned by \(\{v_j|j\in \mathbb{Z}\}\)

symmetrical choice

\[H v_j=(\lambda -2j)v_j\] \[F v_j=(j-\frac{\lambda }{2})v_{j+1}\] \[E v_j=(\frac{\lambda }{2}-j)v_{j-1}\]


semi-infinite case : Verma module

  • How to construct a representation $V(\lambda)$ with basis \(\{v_j|j\geq 0\}\)
  • \(\lambda\in \mathbb{F}\) 에 대하여, highest weight vector \(v_0\) 를 정의

\[Ev_0=0\]\[Hv_0=\lambda v_0\]

  • impose the following conditions

\[H v_j=(\lambda -2j)v_j\]\[F v_j=(j+1)v_{j+1}\]\[E v_j=(\lambda -j+1)v_{j-1}\]


finite representation

  • \(\{v_j|j\geq 0\}\) 가 생성하는 벡터공간 $V(\lambda)$ 이 유한차원인 L-모듈이 되려면, \(\lambda\in\mathbb{Z}, \lambda\geq 0\) 이 만족되어야 한다


computational resource