"Quantized coordinate ring"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (Pythagoras0 사용자가 Coordinate ring of maximal unipotent subgroup 문서를 Quantized coordinate ring 문서로 옮겼습니다.) |
imported>Pythagoras0 |
||
2번째 줄: | 2번째 줄: | ||
* [[Monoidal categorifications of cluster algebras]] | * [[Monoidal categorifications of cluster algebras]] | ||
* $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$ where $\mathfrak{n}=Lie(N)$ | * $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$ where $\mathfrak{n}=Lie(N)$ | ||
− | * | + | * Ringel, Lusztig : Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$-modules |
* Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules | * Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules | ||
* Geiss-Leclerc-S : Dualizing Lusztig's construction, get a cluster character | * Geiss-Leclerc-S : Dualizing Lusztig's construction, get a cluster character |
2014년 8월 8일 (금) 14:48 판
introduction
- Monoidal categorifications of cluster algebras
- $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$ where $\mathfrak{n}=Lie(N)$
- Ringel, Lusztig : Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$-modules
- Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules
- Geiss-Leclerc-S : Dualizing Lusztig's construction, get a cluster character