"Quantized coordinate ring"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
5번째 줄: 5번째 줄:
 
* Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules
 
* Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules
 
* Geiss-Leclerc-S  : Dualizing Lusztig's construction, get a cluster character
 
* Geiss-Leclerc-S  : Dualizing Lusztig's construction, get a cluster character
 +
 +
 +
==dual of quantized enveloping algebras==
 +
* $\mathfrak{g}$ : simple Lie algebra over $\mathbb{C}$
 +
* $U_q:=U_q(\mathfrak{g})$ : quantum enveloping algebra
 +
* $U_q^{*}=\operatorname{Hom}_{\mathbb{Q}(q)}(U_q,\mathbb{Q}(q))$
 +
* $A_q(\mathfrak{g}):=\{\varphi \in U_q^{*} | \dim U_q \varphi, \dim \varphi U_q <\infty \}$
 +
* We call $A_q(\mathfrak{g})$ the quantized coordinate ring

2014년 8월 8일 (금) 20:24 판

introduction

  • Monoidal categorifications of cluster algebras
  • $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$ where $\mathfrak{n}=Lie(N)$
  • Ringel, Lusztig : Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$-modules
  • Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules
  • Geiss-Leclerc-S : Dualizing Lusztig's construction, get a cluster character


dual of quantized enveloping algebras

  • $\mathfrak{g}$ : simple Lie algebra over $\mathbb{C}$
  • $U_q:=U_q(\mathfrak{g})$ : quantum enveloping algebra
  • $U_q^{*}=\operatorname{Hom}_{\mathbb{Q}(q)}(U_q,\mathbb{Q}(q))$
  • $A_q(\mathfrak{g}):=\{\varphi \in U_q^{*} | \dim U_q \varphi, \dim \varphi U_q <\infty \}$
  • We call $A_q(\mathfrak{g})$ the quantized coordinate ring