"Quantized coordinate ring"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* [[Monoidal categorifications of cluster algebras]]
+
* $\mathfrak{g}$ : simple Lie algebra over $\mathbb{C}$
* $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$ where $\mathfrak{n}=Lie(N)$
+
* $G$ : connected, simply-connected simple algebraic group with Lie algebra $\mathfrak{g}$
* Ringel, Lusztig : Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$-modules
 
* Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules
 
* Geiss-Leclerc-S  : Dualizing Lusztig's construction, get a cluster character
 
  
  
 
==dual of quantized enveloping algebras==
 
==dual of quantized enveloping algebras==
* $\mathfrak{g}$ : simple Lie algebra over $\mathbb{C}$
+
===QEA===
* $U_q:=U_q(\mathfrak{g})$ : quantum enveloping algebra
+
* $q\in \mathbb{C}^{\times}$ not a root of 1
 +
* $U_q:=U_q(\mathfrak{g})=\langle k_i^{\pm},e_i,f_i :i\in I \rangle$ : quantum enveloping algebra
 +
===quantized coordinate algebra===
 
* $U_q^{*}=\operatorname{Hom}_{\mathbb{Q}(q)}(U_q,\mathbb{Q}(q))$
 
* $U_q^{*}=\operatorname{Hom}_{\mathbb{Q}(q)}(U_q,\mathbb{Q}(q))$
 
* $A_q(\mathfrak{g}):=\{\varphi \in U_q^{*} | \dim U_q \varphi, \dim \varphi U_q <\infty \}$
 
* $A_q(\mathfrak{g}):=\{\varphi \in U_q^{*} | \dim U_q \varphi, \dim \varphi U_q <\infty \}$
 +
** also denoted by $\mathbb{C}_q[G]$
 
* We call $A_q(\mathfrak{g})$ the quantized coordinate ring
 
* We call $A_q(\mathfrak{g})$ the quantized coordinate ring
 +
 +
 +
==comodules and modules==
 +
* $\mathbb{C}_q[G]$-comodules = locally finite $U_q(\mathfrak{g})$-modules of type 1
 +
 +
;thm (Soibelman)
 +
 +
 +
 +
==cluster theory==
 +
* [[Monoidal categorifications of cluster algebras]]
 +
* $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$ where $\mathfrak{n}=Lie(N)$
 +
* Ringel, Lusztig : Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$-modules
 +
* Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules
 +
* Geiss-Leclerc-S  : Dualizing Lusztig's construction, get a cluster character
  
  
 
==related items==
 
==related items==
 
* [[Q-boson algebras]]
 
* [[Q-boson algebras]]
 +
 +
 +
==articles==
 +
*

2014년 8월 8일 (금) 20:39 판

introduction

  • $\mathfrak{g}$ : simple Lie algebra over $\mathbb{C}$
  • $G$ : connected, simply-connected simple algebraic group with Lie algebra $\mathfrak{g}$


dual of quantized enveloping algebras

QEA

  • $q\in \mathbb{C}^{\times}$ not a root of 1
  • $U_q:=U_q(\mathfrak{g})=\langle k_i^{\pm},e_i,f_i :i\in I \rangle$ : quantum enveloping algebra

quantized coordinate algebra

  • $U_q^{*}=\operatorname{Hom}_{\mathbb{Q}(q)}(U_q,\mathbb{Q}(q))$
  • $A_q(\mathfrak{g}):=\{\varphi \in U_q^{*} | \dim U_q \varphi, \dim \varphi U_q <\infty \}$
    • also denoted by $\mathbb{C}_q[G]$
  • We call $A_q(\mathfrak{g})$ the quantized coordinate ring


comodules and modules

  • $\mathbb{C}_q[G]$-comodules = locally finite $U_q(\mathfrak{g})$-modules of type 1
thm (Soibelman)


cluster theory

  • Monoidal categorifications of cluster algebras
  • $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$ where $\mathfrak{n}=Lie(N)$
  • Ringel, Lusztig : Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$-modules
  • Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules
  • Geiss-Leclerc-S : Dualizing Lusztig's construction, get a cluster character


related items


articles