"Quantized coordinate ring"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
− | + | * $\mathfrak{g}$ : simple Lie algebra over $\mathbb{C}$ | |
− | * $ | + | * $G$ : connected, simply-connected simple algebraic group with Lie algebra $\mathfrak{g}$ |
− | |||
− | * | ||
− | |||
==dual of quantized enveloping algebras== | ==dual of quantized enveloping algebras== | ||
− | * $\ | + | ===QEA=== |
− | * $U_q:=U_q(\mathfrak{g})$ : quantum enveloping algebra | + | * $q\in \mathbb{C}^{\times}$ not a root of 1 |
+ | * $U_q:=U_q(\mathfrak{g})=\langle k_i^{\pm},e_i,f_i :i\in I \rangle$ : quantum enveloping algebra | ||
+ | ===quantized coordinate algebra=== | ||
* $U_q^{*}=\operatorname{Hom}_{\mathbb{Q}(q)}(U_q,\mathbb{Q}(q))$ | * $U_q^{*}=\operatorname{Hom}_{\mathbb{Q}(q)}(U_q,\mathbb{Q}(q))$ | ||
* $A_q(\mathfrak{g}):=\{\varphi \in U_q^{*} | \dim U_q \varphi, \dim \varphi U_q <\infty \}$ | * $A_q(\mathfrak{g}):=\{\varphi \in U_q^{*} | \dim U_q \varphi, \dim \varphi U_q <\infty \}$ | ||
+ | ** also denoted by $\mathbb{C}_q[G]$ | ||
* We call $A_q(\mathfrak{g})$ the quantized coordinate ring | * We call $A_q(\mathfrak{g})$ the quantized coordinate ring | ||
+ | |||
+ | |||
+ | ==comodules and modules== | ||
+ | * $\mathbb{C}_q[G]$-comodules = locally finite $U_q(\mathfrak{g})$-modules of type 1 | ||
+ | |||
+ | ;thm (Soibelman) | ||
+ | |||
+ | |||
+ | |||
+ | ==cluster theory== | ||
+ | * [[Monoidal categorifications of cluster algebras]] | ||
+ | * $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$ where $\mathfrak{n}=Lie(N)$ | ||
+ | * Ringel, Lusztig : Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$-modules | ||
+ | * Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules | ||
+ | * Geiss-Leclerc-S : Dualizing Lusztig's construction, get a cluster character | ||
==related items== | ==related items== | ||
* [[Q-boson algebras]] | * [[Q-boson algebras]] | ||
+ | |||
+ | |||
+ | ==articles== | ||
+ | * |
2014년 8월 8일 (금) 20:39 판
introduction
- $\mathfrak{g}$ : simple Lie algebra over $\mathbb{C}$
- $G$ : connected, simply-connected simple algebraic group with Lie algebra $\mathfrak{g}$
dual of quantized enveloping algebras
QEA
- $q\in \mathbb{C}^{\times}$ not a root of 1
- $U_q:=U_q(\mathfrak{g})=\langle k_i^{\pm},e_i,f_i :i\in I \rangle$ : quantum enveloping algebra
quantized coordinate algebra
- $U_q^{*}=\operatorname{Hom}_{\mathbb{Q}(q)}(U_q,\mathbb{Q}(q))$
- $A_q(\mathfrak{g}):=\{\varphi \in U_q^{*} | \dim U_q \varphi, \dim \varphi U_q <\infty \}$
- also denoted by $\mathbb{C}_q[G]$
- We call $A_q(\mathfrak{g})$ the quantized coordinate ring
comodules and modules
- $\mathbb{C}_q[G]$-comodules = locally finite $U_q(\mathfrak{g})$-modules of type 1
- thm (Soibelman)
cluster theory
- Monoidal categorifications of cluster algebras
- $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$ where $\mathfrak{n}=Lie(N)$
- Ringel, Lusztig : Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$-modules
- Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules
- Geiss-Leclerc-S : Dualizing Lusztig's construction, get a cluster character