"Affine sl(2)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
Gannon 190p, 193p, 196p,371p | Gannon 190p, 193p, 196p,371p | ||
+ | |||
+ | |||
+ | |||
+ | |||
20번째 줄: | 24번째 줄: | ||
* construct a Lie algebra from the new Cartan matrix <math>A'</math><br> | * construct a Lie algebra from the new Cartan matrix <math>A'</math><br> | ||
* <br> Add a outer derivation<math>d=-l_0</math> to compensate the degeneracy of the Cartan matrix<br><math>\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0 \end{pmatrix}</math><br> | * <br> Add a outer derivation<math>d=-l_0</math> to compensate the degeneracy of the Cartan matrix<br><math>\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0 \end{pmatrix}</math><br> | ||
+ | * <br> | ||
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">basic quantities</h5> | ||
+ | |||
+ | * a_i=1<br> | ||
+ | * c_i=a_i^{\vee}=1<br> | ||
+ | * a_{ij}<br> | ||
+ | * dual Coxeter number<br> | ||
+ | * Weyl vector<br> | ||
28번째 줄: | 41번째 줄: | ||
* integrable highest weight<br><math>\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1</math>, <math>\lambda_{i}\in\mathbb{N}</math><br> | * integrable highest weight<br><math>\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1</math>, <math>\lambda_{i}\in\mathbb{N}</math><br> | ||
− | * level<br><math>k= | + | * level<br><math>k=\lambda_{0}+\lambda_{1}</math><br> |
+ | * therefore <math>\lambda_{0}\in\{0,1,\cdots,k\}</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>killing form</h5> | ||
+ | |||
+ | * invariant symmetric non-deg bilinear forms<br><math><h_i,h_j>=a_jc_j^{-1}A_{ij}</math><br><math><h_i,d>=\alpha_i(d)=0</math> for <math>i \neq 0</math><br><math><h_0,d>=\alpha_0(d)=1</math><br><math><d,d>=0</math><br> |
2010년 3월 5일 (금) 03:46 판
Gannon 190p, 193p, 196p,371p
construction
-
- this is borrowed from affine Kac-Moody algebra entry
- Let \(\mathfrak{g}\) be a semisimple Lie algebra with root system \(\Phi\) and the invariant form \(<\cdot,\cdot>\)
- say \(\mathfrak{g}=A_1\), \(\Phi=\{\alpha\}\)
- Cartan matrix
\(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\) - Find the highest root
- \(\alpha\)
- \(\alpha\)
- Add another simple root \(\alpha_0\) to the root system \(\Phi\)
- \(\alpha_0=-\alpha\)
- \(\alpha_0=-\alpha\)
- Construct a new Cartan matrix
\(A' = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}\) - Note that this matrix has rank 1 since \((1,1)\) belongs to the null space
- construct a Lie algebra from the new Cartan matrix \(A'\)
-
Add a outer derivation\(d=-l_0\) to compensate the degeneracy of the Cartan matrix
\(\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0 \end{pmatrix}\) -
basic quantities
- a_i=1
- c_i=a_i^{\vee}=1
- a_{ij}
- dual Coxeter number
- Weyl vector
level k highest weight representation
- integrable highest weight
\(\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1\), \(\lambda_{i}\in\mathbb{N}\) - level
\(k=\lambda_{0}+\lambda_{1}\) - therefore \(\lambda_{0}\in\{0,1,\cdots,k\}\)
killing form
- invariant symmetric non-deg bilinear forms
\(<h_i,h_j>=a_jc_j^{-1}A_{ij}\)
\(<h_i,d>=\alpha_i(d)=0\) for \(i \neq 0\)
\(<h_0,d>=\alpha_0(d)=1\)
\(<d,d>=0\)