"Affine sl(2)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
Gannon 190p, 193p, 196p,371p | Gannon 190p, 193p, 196p,371p | ||
− | |||
− | |||
− | |||
− | |||
23번째 줄: | 19번째 줄: | ||
* Note that this matrix has rank 1 since <math>(1,1)</math> belongs to the null space<br> | * Note that this matrix has rank 1 since <math>(1,1)</math> belongs to the null space<br> | ||
* construct a Lie algebra from the new Cartan matrix <math>A'</math><br> | * construct a Lie algebra from the new Cartan matrix <math>A'</math><br> | ||
− | * | + | * Add a outer derivation<math>d=-l_0</math> to compensate the degeneracy of the Cartan matrix<br><math>\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0 \end{pmatrix}</math><br> |
− | + | ||
+ | |||
38번째 줄: | 35번째 줄: | ||
− | <h5> | + | |
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">fixing a Cartan subalgebra and its dual</h5> | ||
− | * | + | * basis of the Cartan subalgebra H<br><math>h_0=C-h_1</math><br><math>h_1</math><br><math>d=-l_0</math><br> |
− | + | * dual basis for H<br><math>\omega_0,\omega_1,\delta</math><br> | |
− | * | ||
50번째 줄: | 48번째 줄: | ||
<h5>killing form</h5> | <h5>killing form</h5> | ||
− | * invariant symmetric non-deg bilinear forms<br><math><h_i,h_j>= | + | * invariant symmetric non-deg bilinear forms<br><math><h_i,h_j>=A_{ij}</math><br><math><h_0,d>=1</math><br><math><h_1,d>=0</math><br><math><d,d>=0</math><br> |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>level k highest weight representation</h5> | ||
+ | |||
+ | * integrable highest weight<br><math>\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1</math>, <math>\lambda_{i}\in\mathbb{N}</math><br> | ||
+ | * level<br><math>k=\lambda_{0}+\lambda_{1}</math><br> | ||
+ | * therefore <math>\lambda_{0}\in\{0,1,\cdots,k\}</math> |
2010년 3월 22일 (월) 13:19 판
Gannon 190p, 193p, 196p,371p
construction
-
- this is borrowed from affine Kac-Moody algebra entry
- Let \(\mathfrak{g}\) be a semisimple Lie algebra with root system \(\Phi\) and the invariant form \(<\cdot,\cdot>\)
- say \(\mathfrak{g}=A_1\), \(\Phi=\{\alpha\}\)
- Cartan matrix
\(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\) - Find the highest root
- \(\alpha\)
- \(\alpha\)
- Add another simple root \(\alpha_0\) to the root system \(\Phi\)
- \(\alpha_0=-\alpha\)
- \(\alpha_0=-\alpha\)
- Construct a new Cartan matrix
\(A' = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}\) - Note that this matrix has rank 1 since \((1,1)\) belongs to the null space
- construct a Lie algebra from the new Cartan matrix \(A'\)
- Add a outer derivation\(d=-l_0\) to compensate the degeneracy of the Cartan matrix
\(\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0 \end{pmatrix}\)
basic quantities
- a_i=1
- c_i=a_i^{\vee}=1
- a_{ij}
- dual Coxeter number
- Weyl vector
fixing a Cartan subalgebra and its dual
- basis of the Cartan subalgebra H
\(h_0=C-h_1\)
\(h_1\)
\(d=-l_0\) - dual basis for H
\(\omega_0,\omega_1,\delta\)
killing form
- invariant symmetric non-deg bilinear forms
\(<h_i,h_j>=A_{ij}\)
\(<h_0,d>=1\)
\(<h_1,d>=0\)
\(<d,d>=0\)
level k highest weight representation
- integrable highest weight
\(\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1\), \(\lambda_{i}\in\mathbb{N}\) - level
\(k=\lambda_{0}+\lambda_{1}\) - therefore \(\lambda_{0}\in\{0,1,\cdots,k\}\)