"Affine sl(2)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
| 48번째 줄: | 48번째 줄: | ||
** <math>\delta=\alpha_0+\alpha_1</math><br>  | ** <math>\delta=\alpha_0+\alpha_1</math><br>  | ||
*  simple roots<br>  | *  simple roots<br>  | ||
| − | **   | + | ** <math>\alpha_0,\alpha_1</math><br>  | 
*  positive roots<br>  | *  positive roots<br>  | ||
** <math>\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup  (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}</math><br>  | ** <math>\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup  (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}</math><br>  | ||
| 62번째 줄: | 62번째 줄: | ||
*  basis of the Cartan subalgebra H<br><math>h_0=C-h_1</math><br><math>h_1</math><br><math>d=-l_0</math><br>  | *  basis of the Cartan subalgebra H<br><math>h_0=C-h_1</math><br><math>h_1</math><br><math>d=-l_0</math><br>  | ||
*  dual basis for H<br><math>\omega_0,\omega_1,\delta</math><br>  | *  dual basis for H<br><math>\omega_0,\omega_1,\delta</math><br>  | ||
| + | *   <br> Weyl vector<br><math>\rho=\sum_{i=0}^{r}\omega_i</math><br>  | ||
2010년 3월 22일 (월) 15:46 판
Gannon 190p, 193p, 196p,371p
construction
- this is borrowed from affine Kac-Moody algebra entry
 - Let \(\mathfrak{g}\) be a semisimple Lie algebra with root system \(\Phi\) and the invariant form \(<\cdot,\cdot>\)
 - say \(\mathfrak{g}=A_1\), \(\Phi=\{\alpha\}\)
 - Cartan matrix
\(\mathbf{A} = \begin{pmatrix} 2 \end{pmatrix}\) - Find the highest root 
- \(\alpha\)
 
 - \(\alpha\)
 - Add another simple root \(\alpha_0\) to the root system \(\Phi\)
- \(\alpha_0=-\alpha\)
 
 - \(\alpha_0=-\alpha\)
 - Construct a new Cartan matrix
\(A' = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}\) - Note that this matrix has rank 1 since \((1,1)\) belongs to the null space
 - construct a Lie algebra from the new Cartan matrix \(A'\)
 - Add a outer derivation\(d=-l_0\) to compensate the degeneracy of the Cartan matrix
\(\begin{pmatrix} 2 & -2 & 1\\ -2 & 2 &0 \\ 1 &0 & 0 \end{pmatrix}\) 
basic quantities
- a_i=1
 - c_i=a_i^{\vee}=1
 - a_{ij}
 - coxeter number
- 2
 
 - 2
 - dual Coxeter number
- 2
 
 - 2
 - Weyl vector
 
root systems
- \(\Phi=\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\cup \{n\delta|n\in\mathbb{Z},n\neq 0\}\)
 - real roots
- \(\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\)
 
 - \(\{\alpha+n\delta|\alpha\in\Phi^{0},n\in\mathbb{Z}\}\)
 - imaginary roots   
- \(\{n\delta|n\in\mathbb{Z},n\neq 0\}\)
 - \(\delta=\alpha_0+\alpha_1\)
 
 - simple roots
- \(\alpha_0,\alpha_1\)
 
 - \(\alpha_0,\alpha_1\)
 - positive roots
- \(\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup  (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\)
 
 - \(\Phi^{+}=\{\alpha+n\delta|\alpha\in\Phi^{0},n>0\}\cup  (\Phi^{0})^{+}\cup \{n\delta|n\in\mathbb{Z},n> 0\}\)
 
fixing a Cartan subalgebra and its dual
- basis of the Cartan subalgebra H
\(h_0=C-h_1\)
\(h_1\)
\(d=-l_0\) - dual basis for H
\(\omega_0,\omega_1,\delta\) -  
Weyl vector
\(\rho=\sum_{i=0}^{r}\omega_i\) 
killing form
- invariant symmetric non-deg bilinear forms
\(<h_i,h_j>=A_{ij}\)
\(<h_0,d>=1\)
\(<h_1,d>=0\)
\(<d,d>=0\) 
level k highest weight representation
- integrable highest weight
\(\lambda=\lambda_{0}\omega_0+\lambda_{1}\omega_1\), \(\lambda_{i}\in\mathbb{N}\) - level
\(k=\lambda_{0}+\lambda_{1}\) - therefore \(\lambda_{0}\in\{0,1,\cdots,k\}\)
 
central charge
- central charge
\(c_{\lambda}=\frac{k}{k+h^{\vee}}\text{dim }\mathfrak{\bar{g}}\) - conformal weight
\(h_{\lambda}=\frac{(\lambda|\lambda+2\rho)}{2(k+h^{\vee})}\) - definition of conformal anomaly
\(m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}\) 
- strange formula
\(\frac{<\rho,\rho>}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}\) - very strange formula
 - conformal anomaly 
\(m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(\lambda)}{24}\)