"고전역학에서의 적분가능 모형"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(차이 없음)

2012년 9월 15일 (토) 20:43 판

적분가능 모형

  • 고전/양자 역학에서의 적분가능 모형은 교환법칙을 만족시키는 적분들 또는 보존량의 존재를 특징으로 함
  • 자유도가 N으로 주어진 계
  • 해밀토니안 \(H(q,p)\)
  • 위치 변수 \(q=(q_ 1,\cdots,q_N)\)
  • 운동량 변수 \(p=(p_ 1,\cdots,p_N)\)
  • 운동방정식
    \(\dot{q}_i=\partial H/\partial p_i\)
    \(\dot{p}_i=-\partial H/\partial q_i\)
  • N개의 독립인 보존량(또는 제1적분) \(L_ 1(x),\cdots,L_N(x)\)이 필요하다
  • 포아송 괄호
    \(f(p_i,q_i,t), g(p_i,q_i,t)\)
    \(\{f,g\} = \sum_{i=1}^{N} \left[ \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} \right]\)
  • L과 H의 포아송 괄호 \(\{L_i,H\}\)
  • 보존량들은 다음의 포아송 괄호 관계를 만족시켜야 한다
    \(\{L_i,H\}=0\)
    \(\{L_i,L_j\}=0\)
  • action-angle 변수
    • 새로운 변수action 변수 \(I\), angle 변수 \({\theta}\) 를 도입하여, 해밀토니안을 새로운 변수들의 함수로 고려 \(H(I,\theta)\)
    • 다음 조건을 만족시켜야 한다
      \(\dot{\theta}=\partial H/\partial I=\omega\), \(\partial H/\partial \theta=0\)




자유낙하하는 물체

  • 해밀토니안
    \(H(q,p)=\frac{p^2}{2m}+mgq\)
    g는 중력가속도. m은 입자의 질량
  • 해밀턴 방정식
    \(\dot{q}=\partial H/\partial p=\frac{p}{m}\)
    \(\dot{p}=-\partial H/\partial q=-mg\)
  • 운동방정식
    \(\ddot{q}=-g\)
  • 보존량
    \(L_ 1(q,p)=H(q,p)\)
    에너지
    • \(\dot{E}=\frac{p\dot{p}}{m}+mg\dot{q}=\frac{p(-mg)}{m}+mg\frac{p}{m}=0\)

단순조화진동자(simple harmonic oscillator)



단진자



the an-harmonic oscillator in 2 dim

이체 문제 (two-body problem)

geodesic motion on an ellipsoid





헤논-헤일스 방정식 (Hénon-Heiles Equation)[1]



링크




메모

  • The 2 body problem (Kepler problem, Coulomb problem)
  • the simple pendulum
  • the double pendulum
  • the free rigid body
  • the rigid body with a fixed point(= tops - Euler top, Lagrange top,Kovaleskaya top)
  • the harmonic oscillator
  • the an-harmonic oscillator in 2 dim
  • the motion of a particle in a central potential
  • the motion on a sphere with a harmonic potential
  • the geodesic motion on an ellipsoid (Jacobi\[CloseCurlyQuote]s geodesic flow on an ellipsoid)
  • the geodesic motion on a surface of revolution
  • the geodesic motion on a torus
  • the geodesic motion on a quartic
  • the geodesic motion on SO(3)
  • the Moser system
  • the Calogero-Sutherland systems
  • the Calogero-Moser systems
  • the Toda lattices (periodic, non-periodic, non-abelian)
  • the Clebsh rigid body in an ideal fluid,
  • the n-dimensional rigid body
  • the Garnier system
  • the Gaudin systems
  • KdV equation