"R-matrix"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
12번째 줄: 12번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">YBE</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">YBE</h5>
  
 
* [[Yang-Baxter equation (YBE)|Yang-Baxter equation]]<br><math>R_{12}R_{13}R_{23}=R_{23}R_{13}R_{12}</math><br>
 
* [[Yang-Baxter equation (YBE)|Yang-Baxter equation]]<br><math>R_{12}R_{13}R_{23}=R_{23}R_{13}R_{12}</math><br>
25번째 줄: 25번째 줄:
  
 
*  For <math>R</math> matrix on <math>V \otimes V</math>, define <math>\bar R=p\circ R</math> where <math>p</math> is the permutation map.<br><math>\bar R_i=1\otimes \cdots \otimes\bar R \cdots \otimes 1</math>, <math>\bar R_i</math> sitting in i and i+1 th slot.<br>
 
*  For <math>R</math> matrix on <math>V \otimes V</math>, define <math>\bar R=p\circ R</math> where <math>p</math> is the permutation map.<br><math>\bar R_i=1\otimes \cdots \otimes\bar R \cdots \otimes 1</math>, <math>\bar R_i</math> sitting in i and i+1 th slot.<br>
*  Then YB reduces to<br>
+
*  Then YB reduces to<br><math>\bar R_i\bar R_j =\bar R_j\bar R_i</math> whenever <math>|i-j| \geq 2 </math><br><math>\bar R_i\bar R_{i+1}\bar R_i= \bar R_{i+1}\bar R_i \bar R_{i+1}</math><br> which are the [[Braid group]] relations.<br>
 
+
*  with an R-matrix satisfying the YBE, we obtain a representation of the [[Braid group]], which then gives a link invariant in [[Knot theory]]<br>
<math>\bar R_i\bar R_j =\bar R_j\bar R_i</math> whenever <math>|i-j| \geq 2 </math>
 
 
 
<math>\bar R_i\bar R_{i+1}\bar R_i= \bar R_{i+1}\bar R_i \bar R_{i+1}</math>
 
 
 
which are the [[Braid group]] relations.
 
  
 
 
 
 
 
<br>
 
  
 
 
 
 

2010년 8월 10일 (화) 12:23 판

introduction
  • R-matrix has entries from Boltzman weights.
  • From quantum group point of view, R-matrix naturally appears as intertwiners of tensor product of two evaluation modules
  • from this intertwining property we need to consider  \(\bar R=p\circ R\) instead of the \(R\) matrix where \(p\) is the permutation map
  • this is what makes the module category into braided monoidal category

 

 

 

YBE

 

 

 

R-matrix and Braid groups
  • For \(R\) matrix on \(V \otimes V\), define \(\bar R=p\circ R\) where \(p\) is the permutation map.
    \(\bar R_i=1\otimes \cdots \otimes\bar R \cdots \otimes 1\), \(\bar R_i\) sitting in i and i+1 th slot.
  • Then YB reduces to
    \(\bar R_i\bar R_j =\bar R_j\bar R_i\) whenever \(|i-j| \geq 2 \)
    \(\bar R_i\bar R_{i+1}\bar R_i= \bar R_{i+1}\bar R_i \bar R_{i+1}\)
    which are the Braid group relations.
  • with an R-matrix satisfying the YBE, we obtain a representation of the Braid group, which then gives a link invariant in Knot theory

 

 

related items

 

 

books

 

 

encyclopedia

 

 

blogs

 

articles

 

TeX