"R-matrix"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
91번째 줄: | 91번째 줄: | ||
==TeX ==[[분류:개인노트]] | ==TeX ==[[분류:개인노트]] | ||
[[분류:quantum groups]] | [[분류:quantum groups]] | ||
+ | [[분류:math and physics]] |
2012년 10월 29일 (월) 09:53 판
introduction
- R-matrix has entries from Boltzman weights.
- From quantum group point of view, R-matrix naturally appears as intertwiners of tensor product of two evaluation modules
- from this intertwining property we need to consider \(\bar R=p\circ R\) instead of the \(R\) matrix where \(p\) is the permutation map
- this is what makes the module category into braided monoidal category
YBE
- Yang-Baxter equation
\(R_{12}R_{13}R_{23}=R_{23}R_{13}R_{12}\) - $R(u,\eta)$
- $u$ is called the spectral parameter
- $\eta$ quantum paramter
- ignoring $\eta$, we get classical R-matrix $R(u)$ in $U(\mathfrak{g})$
- ignoring $u$, we get $R(\eta)$ in $U_{q}(\mathfrak{g})$ where $q=e^{\eta}$
- found by Drinfeld and Jimbo
R-matrix and Braid groups
- For \(R\) matrix on \(V \otimes V\), define \(\bar R=p\circ R\) where \(p\) is the permutation map.
\(\bar R_i=1\otimes \cdots \otimes\bar R \cdots \otimes 1\), \(\bar R_i\) sitting in i and i+1 th slot. - Then YB reduces to
\(\bar R_i\bar R_j =\bar R_j\bar R_i\) whenever \(|i-j| \geq 2 \)
\(\bar R_i\bar R_{i+1}\bar R_i= \bar R_{i+1}\bar R_i \bar R_{i+1}\)
which are the Braid group relations. - with an R-matrix satisfying the YBE, we obtain a representation of the Braid group, which then gives a link invariant in Knot theory
books
- 찾아볼 수학책
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Braided_monoidal_category
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
blogs
- 구글 블로그 검색
articles
- R-matrix arising from affine Hecke algebras and its application to Macdonald's difference operators
- 논문정리
- http://www.ams.org/mathscinet/search/publications.html?pg4=ALLF&s4=
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://www.ams.org/mathscinet
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/
==TeX ==