"R-matrix"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
31번째 줄: 31번째 줄:
  
 
===derivation of \ref{braid} from the YBE===
 
===derivation of \ref{braid} from the YBE===
* $\bar R_{2}\bar R_1 \bar R_{2}$ corresponding to $R_{12}R_{13}R_{23}$ can be written as
+
* $\bar R_{2}(u)\bar R_1(u+v) \bar R_{2}(v)$ corresponding to $R_{12}(u)R_{13}(u+v)R_{23}(v)$ can be written as
 
$$
 
$$
 
(1,2,3) \xrightarrow{R_{23}} (1,2,3) \xrightarrow{P_{23}} (1,3,2) \xrightarrow{R_{12}} (1,3,2) \xrightarrow{P_{12}} (3,1,2)\xrightarrow{R_{23}} (3,1,2)\xrightarrow{P_{23}} (3,2,1)  
 
(1,2,3) \xrightarrow{R_{23}} (1,2,3) \xrightarrow{P_{23}} (1,3,2) \xrightarrow{R_{12}} (1,3,2) \xrightarrow{P_{12}} (3,1,2)\xrightarrow{R_{23}} (3,1,2)\xrightarrow{P_{23}} (3,2,1)  
 
$$
 
$$
* $\bar R_{1}\bar R_2 \bar R_{1}$ corresponding to $R_{23}R_{13}R_{12}$ can be written as
+
* $\bar R_{1}(v)\bar R_2(u+v) \bar R_{1}(u)$ corresponding to $R_{23}(v)R_{13}(u+v)R_{12}(u)$ can be written as
 
$$
 
$$
 
(1,2,3) \xrightarrow{R_{12}} (1,2,3) \xrightarrow{P_{12}} (2,1,3) \xrightarrow{R_{23}} (2,1,3) \xrightarrow{P_{23}} (2,3,1)\xrightarrow{R_{12}} (2,3,1)\xrightarrow{P_{12}} (3,2,1)  
 
(1,2,3) \xrightarrow{R_{12}} (1,2,3) \xrightarrow{P_{12}} (2,1,3) \xrightarrow{R_{23}} (2,1,3) \xrightarrow{P_{23}} (2,3,1)\xrightarrow{R_{12}} (2,3,1)\xrightarrow{P_{12}} (3,2,1)  
 
$$
 
$$
 
  
 
==R-matrix and Braid groups==
 
==R-matrix and Braid groups==

2013년 4월 9일 (화) 07:03 판

introduction

  • R-matrix has entries from Boltzman weights.
  • From quantum group point of view, R-matrix naturally appears as intertwiners of tensor product of two evaluation modules
  • from this intertwining property we need to consider \(\bar R=p\circ R\) instead of the \(R\) matrix where \(p\) is the permutation map
  • this is what makes the module category into braided monoidal category


YBE

\[R_{12}R_{13}R_{23}=R_{23}R_{13}R_{12}\]

  • $R(u,\eta)$
    • $u$ is called the spectral parameter
    • $\eta$ quantum paramter (or semi-classical parameter)
  • ignoring $\eta$, we get the classical R-matrix $R(u)$ in $U(\mathfrak{g})$
  • ignoring $u$, we get $R(\eta)$ in $U_{q}(\mathfrak{g})$ where $q=e^{\eta}$


permuted R-matrix

  • For \(R\) matrix on \(V \otimes V\), define the permuted R-matrix \(\bar R=p\circ R\) where \(p\) is the permutation map.
  • define \(\bar R_i\) sitting in i and i+1 th slot by

\[\bar R_i=1\otimes \cdots \otimes\bar R \cdots \otimes 1\]

  • whenever \(|i-j| \geq 2 \), we have \(\bar R_i\bar R_j =\bar R_j\bar R_i\)
  • the YBE reduces to

\[\bar R_i\bar R_{i+1}\bar R_i= \bar R_{i+1}\bar R_i \bar R_{i+1} \label{braid}\]


derivation of \ref{braid} from the YBE

  • $\bar R_{2}(u)\bar R_1(u+v) \bar R_{2}(v)$ corresponding to $R_{12}(u)R_{13}(u+v)R_{23}(v)$ can be written as

$$ (1,2,3) \xrightarrow{R_{23}} (1,2,3) \xrightarrow{P_{23}} (1,3,2) \xrightarrow{R_{12}} (1,3,2) \xrightarrow{P_{12}} (3,1,2)\xrightarrow{R_{23}} (3,1,2)\xrightarrow{P_{23}} (3,2,1) $$

  • $\bar R_{1}(v)\bar R_2(u+v) \bar R_{1}(u)$ corresponding to $R_{23}(v)R_{13}(u+v)R_{12}(u)$ can be written as

$$ (1,2,3) \xrightarrow{R_{12}} (1,2,3) \xrightarrow{P_{12}} (2,1,3) \xrightarrow{R_{23}} (2,1,3) \xrightarrow{P_{23}} (2,3,1)\xrightarrow{R_{12}} (2,3,1)\xrightarrow{P_{12}} (3,2,1) $$

R-matrix and Braid groups

  • with an R-matrix satisfying the YBE, we obtain a representation of the Braid group, which then gives a link invariant in Knot theory


examples of R-matrix

  • rational R-matrix

$$ \left( \begin{array}{cccc} u+1 & 0 & 0 & 0 \\ 0 & u & 1 & 0 \\ 0 & 1 & u & 0 \\ 0 & 0 & 0 & u+1 \end{array} \right) $$

  • trigonometric R-matrix

$$ \left( \begin{array}{cccc} \sin (u+\eta ) & 0 & 0 & 0 \\ 0 & \sin (u) & \sin (\eta ) & 0 \\ 0 & \sin (\eta ) & \sin (u) & 0 \\ 0 & 0 & 0 & \sin (u+\eta ) \end{array} \right) $$



related items


computational resource


encyclopedia


articles

  • R-matrix arising from affine Hecke algebras and its application to Macdonald's difference operators