"Zamolodchikov's c-theorem"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==encyclopedia== * http://en.wikipedia.org/wiki/C-theorem)
 
imported>Pythagoras0
1번째 줄: 1번째 줄:
 +
==correlation functions==
 +
* $\langle T(z,\bar{z})T(0,0) \rangle =\frac{F(|z|^2)}{z^4}$
 +
* $\langle \Theta(z,\bar{z})\Theta(0,0) \rangle =\frac{H(|z|^2)}{z^4}$
 +
* $\langle T(z,\bar{z})\Theta(0,0) \rangle =\langle \Theta(z,\bar{z})T(0,0) \rangle \frac{G(|z|^2)}{z^3\bar{z}}$
  
  
 +
==C-function==
 +
* $C=2F-G-\frac{3}{8}H$
 +
===UV-limit===
 +
$$
 +
c=-\int_{0}^{\infty}dr \frac{2\dot{C}}{r}=\int_{0}^{\infty}dr \frac{3\dot{H}}{2r}=\frac{3}{2}\int_{0}^{\infty}dr r^3\langle \Theta(z,\bar{z})\Theta(0,0) \rangle
 +
$$
  
  
 
==encyclopedia==
 
==encyclopedia==
 
* http://en.wikipedia.org/wiki/C-theorem
 
* http://en.wikipedia.org/wiki/C-theorem

2013년 2월 25일 (월) 15:32 판

correlation functions

  • $\langle T(z,\bar{z})T(0,0) \rangle =\frac{F(|z|^2)}{z^4}$
  • $\langle \Theta(z,\bar{z})\Theta(0,0) \rangle =\frac{H(|z|^2)}{z^4}$
  • $\langle T(z,\bar{z})\Theta(0,0) \rangle =\langle \Theta(z,\bar{z})T(0,0) \rangle \frac{G(|z|^2)}{z^3\bar{z}}$


C-function

  • $C=2F-G-\frac{3}{8}H$

UV-limit

$$ c=-\int_{0}^{\infty}dr \frac{2\dot{C}}{r}=\int_{0}^{\infty}dr \frac{3\dot{H}}{2r}=\frac{3}{2}\int_{0}^{\infty}dr r^3\langle \Theta(z,\bar{z})\Theta(0,0) \rangle $$


encyclopedia