"Quantized coordinate ring"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* $\mathfrak{g}$ : simple Lie algebra over $\mathbb{C}$
+
* <math>\mathfrak{g}</math> : simple Lie algebra over <math>\mathbb{C}</math>
* $G$ : connected, simply-connected simple algebraic group with Lie algebra $\mathfrak{g}$
+
* <math>G</math> : connected, simply-connected simple algebraic group with Lie algebra <math>\mathfrak{g}</math>
  
  
 
==dual of quantized enveloping algebras==
 
==dual of quantized enveloping algebras==
 
===QEA===
 
===QEA===
* $q\in \mathbb{C}^{\times}$ not a root of 1
+
* <math>q\in \mathbb{C}^{\times}</math> not a root of 1
* $U_q:=U_q(\mathfrak{g})=\langle k_i^{\pm},e_i,f_i :i\in I \rangle$ : quantum enveloping algebra
+
* <math>U_q:=U_q(\mathfrak{g})=\langle k_i^{\pm},e_i,f_i :i\in I \rangle</math> : quantum enveloping algebra
 
===quantized coordinate algebra===
 
===quantized coordinate algebra===
* $U_q^{*}=\operatorname{Hom}_{\mathbb{Q}(q)}(U_q,\mathbb{Q}(q))$
+
* <math>U_q^{*}=\operatorname{Hom}_{\mathbb{Q}(q)}(U_q,\mathbb{Q}(q))</math>
* $A_q(\mathfrak{g}):=\{\varphi \in U_q^{*} | \dim U_q \varphi, \dim \varphi U_q <\infty \}$
+
* <math>A_q(\mathfrak{g}):=\{\varphi \in U_q^{*} | \dim U_q \varphi, \dim \varphi U_q <\infty \}</math>
** also denoted by $\mathbb{C}_q[G]$
+
** also denoted by <math>\mathbb{C}_q[G]</math>
* We call $A_q(\mathfrak{g})$ the quantized coordinate ring
+
* We call <math>A_q(\mathfrak{g})</math> the quantized coordinate ring
  
  
 
==comodules and modules==
 
==comodules and modules==
* $\mathbb{C}_q[G]$-comodules = locally finite $U_q(\mathfrak{g})$-modules of type 1
+
* <math>\mathbb{C}_q[G]</math>-comodules = locally finite <math>U_q(\mathfrak{g})</math>-modules of type 1
  
 
;thm (Soibelman)
 
;thm (Soibelman)
23번째 줄: 23번째 줄:
 
==result of Kuniba, Okado and Yamada==
 
==result of Kuniba, Okado and Yamada==
 
;thm
 
;thm
The transition matrix of PBW-type bases of the positive-half of a quantized universal enveloping algebra $U_q(\mathfrak{g})$ coincides with a matrix coefficients of the intertwiner between certain irreducible modules over the corresponding quantized coordinate ring $A_q(\mathfrak{g})$, introduced by Soibelman.
+
The transition matrix of PBW-type bases of the positive-half of a quantized universal enveloping algebra <math>U_q(\mathfrak{g})</math> coincides with a matrix coefficients of the intertwiner between certain irreducible modules over the corresponding quantized coordinate ring <math>A_q(\mathfrak{g})</math>, introduced by Soibelman.
  
  
 
==cluster theory==
 
==cluster theory==
 
* [[Monoidal categorifications of cluster algebras]]
 
* [[Monoidal categorifications of cluster algebras]]
* $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$ where $\mathfrak{n}=Lie(N)$
+
* <math>\mathbb{C}[N]</math> is Hopf dual to <math>U(\mathfrak{n})</math> where <math>\mathfrak{n}=Lie(N)</math>
* Ringel, Lusztig : Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$-modules
+
* Ringel, Lusztig : Geometric realization of <math>U_q(\mathfrak{n})</math> via constructible sheaves on varieties of <math>\mathbb{C}Q</math>-modules
* Lusztig : Geometric realization of $U(n)$ via constructible functions on varieties of $\Lambda$-modules
+
* Lusztig : Geometric realization of <math>U(n)</math> via constructible functions on varieties of <math>\Lambda</math>-modules
 
* Geiss-Leclerc-S  : Dualizing Lusztig's construction, get a cluster character
 
* Geiss-Leclerc-S  : Dualizing Lusztig's construction, get a cluster character
  

2020년 11월 13일 (금) 17:57 기준 최신판

introduction

  • \(\mathfrak{g}\) : simple Lie algebra over \(\mathbb{C}\)
  • \(G\) : connected, simply-connected simple algebraic group with Lie algebra \(\mathfrak{g}\)


dual of quantized enveloping algebras

QEA

  • \(q\in \mathbb{C}^{\times}\) not a root of 1
  • \(U_q:=U_q(\mathfrak{g})=\langle k_i^{\pm},e_i,f_i :i\in I \rangle\) : quantum enveloping algebra

quantized coordinate algebra

  • \(U_q^{*}=\operatorname{Hom}_{\mathbb{Q}(q)}(U_q,\mathbb{Q}(q))\)
  • \(A_q(\mathfrak{g}):=\{\varphi \in U_q^{*} | \dim U_q \varphi, \dim \varphi U_q <\infty \}\)
    • also denoted by \(\mathbb{C}_q[G]\)
  • We call \(A_q(\mathfrak{g})\) the quantized coordinate ring


comodules and modules

  • \(\mathbb{C}_q[G]\)-comodules = locally finite \(U_q(\mathfrak{g})\)-modules of type 1
thm (Soibelman)


result of Kuniba, Okado and Yamada

thm

The transition matrix of PBW-type bases of the positive-half of a quantized universal enveloping algebra \(U_q(\mathfrak{g})\) coincides with a matrix coefficients of the intertwiner between certain irreducible modules over the corresponding quantized coordinate ring \(A_q(\mathfrak{g})\), introduced by Soibelman.


cluster theory

  • Monoidal categorifications of cluster algebras
  • \(\mathbb{C}[N]\) is Hopf dual to \(U(\mathfrak{n})\) where \(\mathfrak{n}=Lie(N)\)
  • Ringel, Lusztig : Geometric realization of \(U_q(\mathfrak{n})\) via constructible sheaves on varieties of \(\mathbb{C}Q\)-modules
  • Lusztig : Geometric realization of \(U(n)\) via constructible functions on varieties of \(\Lambda\)-modules
  • Geiss-Leclerc-S : Dualizing Lusztig's construction, get a cluster character


related items


expositions


articles

  • Geiss, Christof, Bernard Leclerc, and Jan Schröer. “Quivers with Relations for Symmetrizable Cartan Matrices III: Convolution Algebras.” arXiv:1511.06216 [math], November 19, 2015. http://arxiv.org/abs/1511.06216.
  • Geiss, Christof, Bernard Leclerc, and Jan Schröer. “Quivers with Relations for Symmetrizable Cartan Matrices II: Change of Symmetrizers.” arXiv:1511.05898 [math], November 18, 2015. http://arxiv.org/abs/1511.05898.
  • Oya, Hironori. “Representations of Quantized Function Algebras and the Transition Matrices from Canonical Bases to PBW Bases.” arXiv:1501.01416 [math], January 7, 2015. http://arxiv.org/abs/1501.01416.
  • Tanisaki, T. “Modules over Quantized Coordinate Algebras and PBW-Bases.” arXiv:1409.7973 [math], September 28, 2014. http://arxiv.org/abs/1409.7973.

books

  • Korogodski, Leonid I., and Yan S. Soibelman. Algebras of Functions on Quantum Groups. American Mathematical Soc., 1998.