"Box-ball system"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* Rigged configurations are known to provide action-angle variables for remarkable discrete dynamical systems known as box-ball systems.
 +
 +
 +
==related items==
 +
* [[Rigged configurations]]
 +
 +
 +
==articles==
 
* Lam, Thomas, Pavlo Pylyavskyy, and Reiho Sakamoto. ‘Rigged Configurations and Cylindric Loop Schur Functions’. arXiv:1410.4455 [math-Ph], 16 October 2014. http://arxiv.org/abs/1410.4455.
 
* Lam, Thomas, Pavlo Pylyavskyy, and Reiho Sakamoto. ‘Rigged Configurations and Cylindric Loop Schur Functions’. arXiv:1410.4455 [math-Ph], 16 October 2014. http://arxiv.org/abs/1410.4455.
 
* Inoue, Rei, Atsuo Kuniba, and Taichiro Takagi. ‘Integrable Structure of Box-Ball Systems: Crystal, Bethe Ansatz, Ultradiscretization and Tropical Geometry’. arXiv:1109.5349 [math-Ph], 25 September 2011. http://arxiv.org/abs/1109.5349.
 
* Inoue, Rei, Atsuo Kuniba, and Taichiro Takagi. ‘Integrable Structure of Box-Ball Systems: Crystal, Bethe Ansatz, Ultradiscretization and Tropical Geometry’. arXiv:1109.5349 [math-Ph], 25 September 2011. http://arxiv.org/abs/1109.5349.
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]

2016년 6월 9일 (목) 23:29 판

introduction

  • Rigged configurations are known to provide action-angle variables for remarkable discrete dynamical systems known as box-ball systems.


related items


articles

  • Lam, Thomas, Pavlo Pylyavskyy, and Reiho Sakamoto. ‘Rigged Configurations and Cylindric Loop Schur Functions’. arXiv:1410.4455 [math-Ph], 16 October 2014. http://arxiv.org/abs/1410.4455.
  • Inoue, Rei, Atsuo Kuniba, and Taichiro Takagi. ‘Integrable Structure of Box-Ball Systems: Crystal, Bethe Ansatz, Ultradiscretization and Tropical Geometry’. arXiv:1109.5349 [math-Ph], 25 September 2011. http://arxiv.org/abs/1109.5349.