"Word2vec"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
17번째 줄: | 17번째 줄: | ||
==related items== | ==related items== | ||
* [[Singular value decomposition]] | * [[Singular value decomposition]] | ||
+ | * [[FastText]] | ||
2018년 5월 8일 (화) 00:39 판
gensim
- https://rare-technologies.com/word2vec-tutorial/
- document similarity
- https://rare-technologies.com/performance-shootout-of-nearest-neighbours-contestants/
- Using gensim’s memory-friendly streaming API I then converted these plain text tokens to TF-IDF vectors, ran Singular Value Decomposition (SVD) on this TF-IDF matrix to build a latent semantic analysis (LSA) model and finally stored each Wikipedia document as a 500-dimensional LSA vector to disk.
pretrained korean word2vec
memo