"Non-unitary c(2,2k+1) minimal models"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.)
 
1번째 줄: 1번째 줄:
 +
<h5>introduction</h5>
  
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">central charge and conformal dimensions</h5>
 +
 +
*  central charge<br><math>c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}</math><br>
 +
*  primary fields have conformal dimensions<br><math>h_j=-\frac{j(2k-1-j)}{2(2k+1)}</math>, <math>j\in \{0,1,\cdots,k-1\}</math> or by setting i=j+1<br><math>h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}</math> <math>i\in \{1,2, \cdots,k\}</math> (this is An's notation in his paper)<br>
 +
*  effective central charge<br><math>c_{eff}=c-24h_{min}</math><br><math>c_{eff}=\frac{2k-2}{2k+1}</math><br>
 +
 +
 
 +
 +
 
 +
 +
<h5>character formula and Andrew-Gordon identity</h5>
 +
 +
* [[Andrews-Gordon identity]]
 +
 +
*  character functions<br><math>\chi_i(\tau)=q^{h_i-c/24}\prod_{n\neq 0,\pm i\pmod {2k+1}}(1-q^n)^{-1}</math><br>
 +
*  to understand the factor <math>q^{h-c/24}</math>, look at the [[finite size effect]] page also<br>
 +
* [[bosonic characters of Virasoro minimal models(Rocha-Caridi formula)]]<br>
 +
 +
 
 +
 +
 
 +
 +
<h5>different expressions for central charge</h5>
 +
 +
*  from above<br><math>h_i-c(2,2k+1)/24</math><br><math>c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}</math><br><math>h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}</math>, <math>i\in \{1,2, \cdots,k\}</math><br>
 +
*  L-values<br><math>\frac{k}{12}+\frac{2k+1}{12}-\frac{j(N-j)}{2N}</math><br>
 +
 +
 
 +
 +
 
 +
 +
<h5>Dirichlet L-function</h5>
 +
 +
* [http://pythagoras0.springnote.com/pages/4562847 디리클레 L-함수]
 +
 +
<math>L(-1, \chi) = \frac{1}{2f}\sum_{n=1}^{\infty}{\chi(n)}{n}</math>
 +
 +
<math>n\geq 1</math> 이라 하자. 일반적으로 <math>\chi\neq 1</math>인 primitive 준동형사상 <math>\chi \colon(\mathbb{Z}/f\mathbb{Z})^\times \to \mathbb C^{*}</math>에 대하여 <math>L(1-n,\chi)</math>의 값은 다음과 같이 주어진다
 +
 +
<math>L(1-n,\chi)=-\frac{f^{n-1}}{n}\sum_{(a,f)=1}}\chi(a)B_n(\frac{a}{f})</math>
 +
 +
<math>L(-1,\chi)=L(1-2,\chi)=-\frac{f}{2}\sum_{(a,f)=1}}\chi(a)B_2(\frac{a}{f})</math>
 +
 +
여기서 <math>B_n(x)</math> 는 [http://pythagoras0.springnote.com/pages/4346717 베르누이 다항식](<math>B_0(x)=1</math>, <math>B_1(x)=x-1/2</math>, <math>B_2(x)=x^2-x+1/6</math>, <math>\cdots</math>)
 +
 +
 
 +
 +
Let N=2k+1
 +
 +
<math>\omega=\exp \frac{2\pi i}{2k+1}</math>
 +
 +
G: group of Dirichlet characters of conductor N which maps -1 to 1
 +
 +
G has order k and cyclic generated by <math>\chi</math>
 +
 +
<math>c_i=\frac{1}{2k}\sum_{s=1}^{k}\omega^{is}L(-1,\chi^s)</math>
 +
 +
Then, 
 +
 +
<math>c_i=-\frac{2k+1}{12}+\frac{j(N-j)}{2N}</math>
 +
 +
where j satisfies <math>\chi(j)=\omega^{k-i}</math>
 +
 +
Vacuum energy is given by
 +
 +
<math>d_i=\frac{1}{2}L(-1,\chi^{k})-c_i</math>
 +
 +
 
 +
 +
Since
 +
 +
<math>L(-1,\chi^{k})=\frac{N-1}{12}=\frac{k}{6}</math>,  the vacuum energy 
 +
 +
<math>d_i=\frac{1}{2}L(-1,\chi^{k})-c_i=\frac{k}{12}+\frac{2k+1}{12}-\frac{j(N-j)}{2N}=\frac{j(2k+1-j)}{2(2k+1)}-\frac{k+1}{12}</math>.
 +
 +
These are equal to <math>{h_i-c/24}</math>
 +
 +
 
 +
 +
 
 +
 +
# k := 5<br> f[k_, j_] := (2 k)/<br>    24 + ((2 k + 1)/12 - (j (2 k + 1 - j))/(2 (2 k + 1)))<br> Table[{j, f[k, j]}, {j, 1, 2 k}] // TableForm<br> Table[{j, -24*f[k, j]}, {j, 1, 2 k}] // TableForm<br> d[k_, j_] := (2 (k - j) + 1)^2/(8 (2 k + 1)) - 1/24<br> Table[{j, d[k, j]}, {j, 1, 2 k}] // TableForm<br> Table[{j, -24*d[k, j]}, {j, 1, 2 k}] // TableForm<br> cef[k_, j_] := -((j (2 k - 1 - j))/(2 (2 k +<br>          1))) - (1 - (3 (2 k - 1)^2)/(2 k + 1))/24<br> Table[{j, cef[k, j]}, {j, 0, 2 k - 1}] // TableForm<br> Table[{j, -24*cef[k, j]}, {j, 0, 2 k - 1}] // TableForm
 +
 +
 
 +
 +
 
 +
 +
# w := Exp[2 Pi*I*1/k]<br> L[j_] := -(2 k + 1)/2*<br>   Sum[DirichletCharacter[2 k + 1, j, a]*<br>     BernoulliB[2, a/(2 k + 1)], {a, 1, 2 k}]<br> c[k_, i_] := 1/(2 k) Sum[w^(i*s)*L[Mod[3*s, 2 k]], {s, 1, k}]<br> Table[DiscretePlot[{Re[DirichletCharacter[2 k + 1, j, a]],<br>    Im[DirichletCharacter[2 k + 1, j, a]]}, {a, 0, 2 k + 1},<br>   PlotLabel -> j], {j, 1, EulerPhi[2 k + 1]}]<br> Table[c[i], {i, 1, 2 k}]
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5>history</h5>
 +
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
 +
 
 +
 +
 
 +
 +
<h5>related items</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 +
 +
* http://en.wikipedia.org/wiki/
 +
* http://www.scholarpedia.org/
 +
* http://www.proofwiki.org/wiki/
 +
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 +
 +
 
 +
 +
 
 +
 +
<h5>books</h5>
 +
 +
 
 +
 +
* [[2010년 books and articles]]<br>
 +
* http://gigapedia.info/1/
 +
* http://gigapedia.info/1/
 +
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 +
 +
 
 +
 +
 
 +
 +
<h5>expositions</h5>
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 +
 +
 
 +
 +
* http://www.ams.org/mathscinet
 +
* http://www.zentralblatt-math.org/zmath/en/
 +
* http://arxiv.org/
 +
* http://www.pdf-search.org/
 +
* http://pythagoras0.springnote.com/
 +
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 +
* http://dx.doi.org/
 +
 +
 
 +
 +
 
 +
 +
<h5>question and answers(Math Overflow)</h5>
 +
 +
* http://mathoverflow.net/search?q=
 +
* http://mathoverflow.net/search?q=
 +
 +
 
 +
 +
 
 +
 +
<h5>blogs</h5>
 +
 +
*  구글 블로그 검색<br>
 +
**  http://blogsearch.google.com/blogsearch?q=<br>
 +
** http://blogsearch.google.com/blogsearch?q=
 +
* http://ncatlab.org/nlab/show/HomePage
 +
 +
 
 +
 +
 
 +
 +
<h5>experts on the field</h5>
 +
 +
* http://arxiv.org/
 +
 +
 
 +
 +
 
 +
 +
<h5>links</h5>
 +
 +
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 +
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 +
* http://functions.wolfram.com/

2010년 10월 9일 (토) 04:25 판

introduction

 

 

 

central charge and conformal dimensions
  • central charge
    \(c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}\)
  • primary fields have conformal dimensions
    \(h_j=-\frac{j(2k-1-j)}{2(2k+1)}\), \(j\in \{0,1,\cdots,k-1\}\) or by setting i=j+1
    \(h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}\) \(i\in \{1,2, \cdots,k\}\) (this is An's notation in his paper)
  • effective central charge
    \(c_{eff}=c-24h_{min}\)
    \(c_{eff}=\frac{2k-2}{2k+1}\)

 

 

character formula and Andrew-Gordon identity

 

 

different expressions for central charge
  • from above
    \(h_i-c(2,2k+1)/24\)
    \(c(2,2k+1)=1-\frac{3(2k-1)^2}{2k+1}\)
    \(h_i=-\frac{(i-1)(2k-i)}{2(2k+1)}\), \(i\in \{1,2, \cdots,k\}\)
  • L-values
    \(\frac{k}{12}+\frac{2k+1}{12}-\frac{j(N-j)}{2N}\)

 

 

Dirichlet L-function

\(L(-1, \chi) = \frac{1}{2f}\sum_{n=1}^{\infty}{\chi(n)}{n}\)

\(n\geq 1\) 이라 하자. 일반적으로 \(\chi\neq 1\)인 primitive 준동형사상 \(\chi \colon(\mathbb{Z}/f\mathbb{Z})^\times \to \mathbb C^{*}\)에 대하여 \(L(1-n,\chi)\)의 값은 다음과 같이 주어진다

\(L(1-n,\chi)=-\frac{f^{n-1}}{n}\sum_{(a,f)=1}}\chi(a)B_n(\frac{a}{f})\)

\(L(-1,\chi)=L(1-2,\chi)=-\frac{f}{2}\sum_{(a,f)=1}}\chi(a)B_2(\frac{a}{f})\)

여기서 \(B_n(x)\) 는 베르누이 다항식(\(B_0(x)=1\), \(B_1(x)=x-1/2\), \(B_2(x)=x^2-x+1/6\), \(\cdots\))

 

Let N=2k+1

\(\omega=\exp \frac{2\pi i}{2k+1}\)

G: group of Dirichlet characters of conductor N which maps -1 to 1

G has order k and cyclic generated by \(\chi\)

\(c_i=\frac{1}{2k}\sum_{s=1}^{k}\omega^{is}L(-1,\chi^s)\)

Then, 

\(c_i=-\frac{2k+1}{12}+\frac{j(N-j)}{2N}\)

where j satisfies \(\chi(j)=\omega^{k-i}\)

Vacuum energy is given by

\(d_i=\frac{1}{2}L(-1,\chi^{k})-c_i\)

 

Since

\(L(-1,\chi^{k})=\frac{N-1}{12}=\frac{k}{6}\),  the vacuum energy 

\(d_i=\frac{1}{2}L(-1,\chi^{k})-c_i=\frac{k}{12}+\frac{2k+1}{12}-\frac{j(N-j)}{2N}=\frac{j(2k+1-j)}{2(2k+1)}-\frac{k+1}{12}\).

These are equal to \({h_i-c/24}\)

 

 

  1. k := 5
    f[k_, j_] := (2 k)/
       24 + ((2 k + 1)/12 - (j (2 k + 1 - j))/(2 (2 k + 1)))
    Table[{j, f[k, j]}, {j, 1, 2 k}] // TableForm
    Table[{j, -24*f[k, j]}, {j, 1, 2 k}] // TableForm
    d[k_, j_] := (2 (k - j) + 1)^2/(8 (2 k + 1)) - 1/24
    Table[{j, d[k, j]}, {j, 1, 2 k}] // TableForm
    Table[{j, -24*d[k, j]}, {j, 1, 2 k}] // TableForm
    cef[k_, j_] := -((j (2 k - 1 - j))/(2 (2 k +
             1))) - (1 - (3 (2 k - 1)^2)/(2 k + 1))/24
    Table[{j, cef[k, j]}, {j, 0, 2 k - 1}] // TableForm
    Table[{j, -24*cef[k, j]}, {j, 0, 2 k - 1}] // TableForm

 

 

  1. w := Exp[2 Pi*I*1/k]
    L[j_] := -(2 k + 1)/2*
      Sum[DirichletCharacter[2 k + 1, j, a]*
        BernoulliB[2, a/(2 k + 1)], {a, 1, 2 k}]
    c[k_, i_] := 1/(2 k) Sum[w^(i*s)*L[Mod[3*s, 2 k]], {s, 1, k}]
    Table[DiscretePlot[{Re[DirichletCharacter[2 k + 1, j, a]],
       Im[DirichletCharacter[2 k + 1, j, a]]}, {a, 0, 2 k + 1},
      PlotLabel -> j], {j, 1, EulerPhi[2 k + 1]}]
    Table[c[i], {i, 1, 2 k}]

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links