"Hartmann potential"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
− | + | * Trunk, Michael. ‘The Five-Dimensional Kepler Problem as an SU(2) Gauge System: Algebraic Constraint Quantization’. arXiv:hep-th/9510019, 5 October 1995. http://arxiv.org/abs/hep-th/9510019. | |
+ | * Granovskii, Y. I., A. S. Zhedanov, and I. M. Lutzenko. ‘Quadratic Algebra as a “Hidden” Symmetry of the Hartmann Potential’. Journal of Physics A: Mathematical and General 24, no. 16 (21 August 1991): 3887. doi:10.1088/0305-4470/24/16/024. | ||
+ | * Kibler, M., and P. Winternitz. ‘Dynamical Invariance Algebra of the Hartmann Potential’. Journal of Physics A: Mathematical and General 20, no. 13 (11 September 1987): 4097. doi:10.1088/0305-4470/20/13/018. | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 20:16 판
- Trunk, Michael. ‘The Five-Dimensional Kepler Problem as an SU(2) Gauge System: Algebraic Constraint Quantization’. arXiv:hep-th/9510019, 5 October 1995. http://arxiv.org/abs/hep-th/9510019.
- Granovskii, Y. I., A. S. Zhedanov, and I. M. Lutzenko. ‘Quadratic Algebra as a “Hidden” Symmetry of the Hartmann Potential’. Journal of Physics A: Mathematical and General 24, no. 16 (21 August 1991): 3887. doi:10.1088/0305-4470/24/16/024.
- Kibler, M., and P. Winternitz. ‘Dynamical Invariance Algebra of the Hartmann Potential’. Journal of Physics A: Mathematical and General 20, no. 13 (11 September 1987): 4097. doi:10.1088/0305-4470/20/13/018.