"Symmetrizable generalized Cartan matrix"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
4번째 줄: 4번째 줄:
 
;def
 
;def
 
A [[generalized Cartan matrix]] $A$ is symmetrisable if there exists a non-singular diagonal matrix $D$ and a symmetric matrix $B$ such that $A=DB$.
 
A [[generalized Cartan matrix]] $A$ is symmetrisable if there exists a non-singular diagonal matrix $D$ and a symmetric matrix $B$ such that $A=DB$.
 +
 +
 +
==memo==
 +
* from https://www.sharelatex.com/project/55caaef83e9789d92821b3e8
 +
* $C$ Cartan matrix
 +
* Let $\langle \cdot,\cdot \rangle$ be the invariant inner product
 +
on $\g$, normalized as in \cite{Kac}, so that the square of length of
 +
the maximal root equals $2$ with respect to the induced inner product
 +
on the dual space to the Cartan subalgebra $\h$ of $\g$
 +
* Let $r^\vee$ be the maximal number of edges connecting two vertices of
 +
the Dynkin diagram of $\g$. Thus, $r^\vee=1$ for simply-laced $\g$,
 +
$r^\vee=2$ for $B_\el, C_\el, F_4, G_2$, and $r^\vee=3$ for $D_4$.
 +
From now on we will use the inner product
 +
$$
 +
(\cdot,\cdot) = r^\vee \langle \cdot,\cdot \rangle
 +
$$
 +
on $\h^*$
 +
* $D=\operatorname{diag}(d_1,\cdots, d_\ell)$ such that $B:=D C$ is symmetric
 +
* Let $B = (B_{ij})_{1\leq i,j\leq \ell}$ be the symmetric matrix
 +
$$
 +
B = D C,
 +
$$
 +
i.e.,
 +
$$
 +
B_{ij} = (\alpha_i,\alpha_j) = r^\vee \langle \alpha_i,\alpha_j \rangle.
 +
$$
  
  

2015년 10월 14일 (수) 14:52 판

introduction

  • Generalized Cartan matrix
  • symmetrizability condition the generalized Cartan matrix guarantees the existence of invariant bilinar forms
def

A generalized Cartan matrix $A$ is symmetrisable if there exists a non-singular diagonal matrix $D$ and a symmetric matrix $B$ such that $A=DB$.


memo

on $\g$, normalized as in \cite{Kac}, so that the square of length of the maximal root equals $2$ with respect to the induced inner product on the dual space to the Cartan subalgebra $\h$ of $\g$

  • Let $r^\vee$ be the maximal number of edges connecting two vertices of

the Dynkin diagram of $\g$. Thus, $r^\vee=1$ for simply-laced $\g$, $r^\vee=2$ for $B_\el, C_\el, F_4, G_2$, and $r^\vee=3$ for $D_4$. From now on we will use the inner product $$ (\cdot,\cdot) = r^\vee \langle \cdot,\cdot \rangle $$ on $\h^*$

  • $D=\operatorname{diag}(d_1,\cdots, d_\ell)$ such that $B:=D C$ is symmetric
  • Let $B = (B_{ij})_{1\leq i,j\leq \ell}$ be the symmetric matrix

$$ B = D C, $$ i.e., $$ B_{ij} = (\alpha_i,\alpha_j) = r^\vee \langle \alpha_i,\alpha_j \rangle. $$


example

  • Cartan matrix of $G_2$

$$ A=\left( \begin{array}{cc} 2 & -1 \\ -3 & 2 \\ \end{array} \right) $$

  • take $D$ as follows :

$$ D=\left( \begin{array}{cc} 3 & 0 \\ 0 & 1 \\ \end{array} \right) $$

  • Then $DA=A^{t}D$ is a symmetric matrix

$$ \left( \begin{array}{cc} 6 & -3 \\ -3 & 2 \\ \end{array} \right) $$


related items


computational resource