"3-manifolds and their invariants"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
6번째 줄: 6번째 줄:
  
 
#  L[x_] := Im[PolyLog[2, x]] + 1/2 Log[Abs[x]] Arg[1 - x]<br> f[x_, y_] :=<br>  L[x] + L[1 - x*y] + L[y] + L[(1 - y)/(1 - x*y)] + L[(1 - x)/(1 - x*y)]<br> Print["five term relation"]<br> Table[f[i, j], {i, 0.1, 0.9, 0.1}, {j, 0.1, 0.9, 0.1}] // TableForm<br> N[3 L[Exp[2 I*Pi/3]], 20]<br> N[2 L[Exp[I*Pi/3]], 20]<br> N[3 (L[Exp[2 I*Pi/3]] - L[Exp[4 I*Pi/3]])/2, 20]<br> N[Pi^2*L[Exp[2 I*Pi/3]]/(3 Sqrt[3]), 20]<br>
 
#  L[x_] := Im[PolyLog[2, x]] + 1/2 Log[Abs[x]] Arg[1 - x]<br> f[x_, y_] :=<br>  L[x] + L[1 - x*y] + L[y] + L[(1 - y)/(1 - x*y)] + L[(1 - x)/(1 - x*y)]<br> Print["five term relation"]<br> Table[f[i, j], {i, 0.1, 0.9, 0.1}, {j, 0.1, 0.9, 0.1}] // TableForm<br> N[3 L[Exp[2 I*Pi/3]], 20]<br> N[2 L[Exp[I*Pi/3]], 20]<br> N[3 (L[Exp[2 I*Pi/3]] - L[Exp[4 I*Pi/3]])/2, 20]<br> N[Pi^2*L[Exp[2 I*Pi/3]]/(3 Sqrt[3]), 20]<br>
 +
 +
 
  
 
 
 
 
11번째 줄: 13번째 줄:
 
<h5 style="line-height: 2em; margin: 0px;">Volume of knot complement</h5>
 
<h5 style="line-height: 2em; margin: 0px;">Volume of knot complement</h5>
  
KnotData[]<br> KnotData["FigureEight", "HyperbolicVolume"]<br> N[%, 20]
+
KnotData[]<br> KnotData["FigureEight", "HyperbolicVolume"]<br> N[%, 20]<br>
  
 
 
 
 
25번째 줄: 27번째 줄:
 
<math>\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})</math>
 
<math>\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})</math>
  
<math>\zeta_{\mathbb{Q}\sqrt{-3}}(2)=\frac{\pi^2}{6\sqrt{3}}(D(e^{2\pi i/3})-D(e^{4\pi i/3}))</math>
+
<math>\zeta_{\mathbb{Q}\sqrt{-3}}(2)=\frac{\pi^2}{6\sqrt{3}}(D(e^{2\pi i/3})-D(e^{4\pi i/3}))=\frac{\pi^2}{3\sqrt{3}}D(e^{2\pi i/3})</math>
  
 
<math>\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))</math>
 
<math>\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))</math>

2010년 3월 25일 (목) 17:56 판

introduction
  • volume of figure 8 knot complement
    • 2.02988321281930725
      \(V=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\)
  • what is \(\zeta_{\mathbb{Q}(\sqrt{-3})}(2)\)? numrically 1.285190955484149
  1. L[x_] := Im[PolyLog[2, x]] + 1/2 Log[Abs[x]] Arg[1 - x]
    f[x_, y_] :=
     L[x] + L[1 - x*y] + L[y] + L[(1 - y)/(1 - x*y)] + L[(1 - x)/(1 - x*y)]
    Print["five term relation"]
    Table[f[i, j], {i, 0.1, 0.9, 0.1}, {j, 0.1, 0.9, 0.1}] // TableForm
    N[3 L[Exp[2 I*Pi/3]], 20]
    N[2 L[Exp[I*Pi/3]], 20]
    N[3 (L[Exp[2 I*Pi/3]] - L[Exp[4 I*Pi/3]])/2, 20]
    N[Pi^2*L[Exp[2 I*Pi/3]]/(3 Sqrt[3]), 20]

 

 

Volume of knot complement
  1. KnotData[]
    KnotData["FigureEight", "HyperbolicVolume"]
    N[%, 20]

 

 

 

복소이차수체의 데데킨트 제타함수

\(\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})\)

\(\zeta_{\mathbb{Q}\sqrt{-3}}(2)=\frac{\pi^2}{6\sqrt{3}}(D(e^{2\pi i/3})-D(e^{4\pi i/3}))=\frac{\pi^2}{3\sqrt{3}}D(e^{2\pi i/3})\)

\(\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))\)

  1. L[x_] := Im[PolyLog[2, x]] + 1/2 Log[Abs[x]] Arg[1 - x]
    N[Sum[JacobiSymbol[a, 7]*L[Exp[2 I*Pi*a/7]], {a, 1, 6}], 20]
    N[L[Exp[2 I*Pi/7]] + L[Exp[4 I*Pi/7]] - L[Exp[6 I*Pi/7]], 20]

 

 

history

 

 

related items

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links