"Six-vertex model and Quantum XXZ Hamiltonian"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
40번째 줄: | 40번째 줄: | ||
− | <h5 style="line-height: 2em; margin | + | <h5 style="line-height: 2em; margin: 0px;">transfer matrix formalism and coordinate Bethe ansatz</h5> |
* <math>M=N^{2}</math> number of molecules<br> | * <math>M=N^{2}</math> number of molecules<br> | ||
54번째 줄: | 54번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">anistropic one-dimensional Heisenberg model (XXZ model)</h5> |
* [[Heisenberg spin chain model]] | * [[Heisenberg spin chain model]] | ||
73번째 줄: | 73번째 줄: | ||
− | <h5 style="line-height: 2em; margin | + | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Sutherland's observation</h5> |
* the eigenvectors of the transfer matrix depended on a,b,c only via the parameter<br><math>\Delta=\frac{a^2+b^2-c^2}{2ab}</math><br> | * the eigenvectors of the transfer matrix depended on a,b,c only via the parameter<br><math>\Delta=\frac{a^2+b^2-c^2}{2ab}</math><br> | ||
94번째 줄: | 94번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">free energy</h5> |
* <math>F=-kT \ln Z</math> | * <math>F=-kT \ln Z</math> | ||
102번째 줄: | 102번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">partition function</h5> |
108번째 줄: | 108번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">correlation functions</h5> |
174번째 줄: | 174번째 줄: | ||
Method for calculating finite size corrections in Bethe ansatz systems: Heisenberg chain and six-vertex model<br> de Vega, H. J.; Woynarovich, F. | Method for calculating finite size corrections in Bethe ansatz systems: Heisenberg chain and six-vertex model<br> de Vega, H. J.; Woynarovich, F. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>expositions</h5> | ||
+ | |||
+ | |||
183번째 줄: | 191번째 줄: | ||
* [http://www.springerlink.com/content/f9961j132852j27q/ Integrability of the Quantum XXZ Hamiltonian]<br> | * [http://www.springerlink.com/content/f9961j132852j27q/ Integrability of the Quantum XXZ Hamiltonian]<br> | ||
** T Miwa, 2009 | ** T Miwa, 2009 | ||
+ | * http://jmp.aip.org/resource/1/jmapaq/v49/i3/p033514_s1 | ||
* [http://arxiv.org/abs/cond-mat/0304309 Introduction to solvable lattice models in statistical and mathematical physics]<br> | * [http://arxiv.org/abs/cond-mat/0304309 Introduction to solvable lattice models in statistical and mathematical physics]<br> | ||
** Tetsuo Deguchi, 2003 | ** Tetsuo Deguchi, 2003 | ||
196번째 줄: | 205번째 줄: | ||
** C. N. Yang, C. P. Yang, Phys. Rev. 150, 327 (1966) | ** C. N. Yang, C. P. Yang, Phys. Rev. 150, 327 (1966) | ||
− | * [http://dx.doi.org/10.1016/0031-9163 | + | * [http://dx.doi.org/10.1016/0031-9163%2866%2991024-9 One-dimensional chain of anisotropic spin-spin interactions]<br> |
** C. N. Yang, C. P. Yang, Phys. Rev. 150, 321 (1966) | ** C. N. Yang, C. P. Yang, Phys. Rev. 150, 321 (1966) | ||
* http://dx.doi.org/10.1103/PhysRev.150.327 | * http://dx.doi.org/10.1103/PhysRev.150.327 | ||
202번째 줄: | 211번째 줄: | ||
− | + | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">links</h5> |
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | ||
− | * [http://www.research.att.com/ | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] |
* http://functions.wolfram.com/ | * http://functions.wolfram.com/ |
2010년 10월 2일 (토) 12:59 판
introduction
- ice-type model, R model, Rys model
- XXZ spin chain and the six-vertex transfer matrix have the same eigenvectors
- Boltzmann weights
- monodromy matrix
- trace of monodromy matrix is the transfer matrix
- power of transfer matrix becomes the partition function
types of six vertex models
- on a square lattice with periodic boundary conditions
- on a square lattice with domain wall boundary conditions
- this is related to the Alternating sign matrix theorem
transfer matrix
- borrowed from transfer matrix in statistical mechanics
- transfer matrix is builtup from matrices of Boltzmann weights
- finding eigenvalues and eigenvectors of transfer matrix is crucial
- Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix
- partition function = trace of power of transfer matrices
- so the partition function is calculated in terms of the eigenvalues of the transfer matrix
- then the problem of solving the model is reduced to the computation of this trace
transfer matrix formalism and coordinate Bethe ansatz
- \(M=N^{2}\) number of molecules
- one can regard the up(or down) arrows in a row as 'particles'
- because of the ice rule, their number is conserved and one can try a Bethe ansatz for the eigenvectors of the transfer matrix
- \(f(x_1,\cdots,x_n)\) be the amplitude in an eigenvector of the state with up arrows at the sites \( x_1<x_2<\cdots<x_n\)
- obtain the equation for amplitudes
\(f(x_1,\cdots,x_n)=\sum_{P}A(P)\exp(i\sum_{j=1}^{n}x_jk_{P_j})\) - Bethe ansatz equation for wave numbers : there are n conditions
\(\exp(ik_jn)=\prod_{j\neq i}B(k_i,k_j)=\prod_{j=1}^{n}B(k_i,k_j)\)
where
\(B(k,q)=-\frac{1+e^{ik}e^{iq}-e^{ik}}{1+e^{ik}e^{iq}-e^{iq}}\) - eigenvalue
\(\lambda=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{\prod_{j=1}^{n}1-e^{ik_{j}}}=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{(1-e^{ik_{j}})\cdots(1-e^{ik_{j}})}\)
anistropic one-dimensional Heisenberg model (XXZ model)
- Heisenberg spin chain model
- Hamiltonian of XXZ model or XXZ spin chain with anisotropic parameter \(\Delta=1/2\)
\(\hat H = -\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z)=-\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \frac{1}{2} \sigma_j^z \sigma_{j+1}^z)\) - two body scattering term
\(s_{jl}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-e^{ik_l}+ e^{ik_l+ik_j}\) - equation satisfied by wave numbers
\(\exp(ik_jN)=(-1)^{N-1}\prod_{l=1}^{N}\exp(-i\theta(k_j,k_l))\)
where
\(\theta(p,q)\) is defined as
\(\exp(-i\theta(p,q))=\frac{1-2\Delta e^{ip}+e^{i(p+q)}}{1-2\Delta e^{iq}+e^{i(p+q)}}=\frac{1-e^{ip}+e^{i(p+q)}}{1- e^{iq}+e^{i(p+q)}}\) - fundamental equation
\(k_jN=2\pi I(k_j)+\sum_{l=1}^{N}\theta(k_j,k_l)\) - eigenvalue
- ground state eigevector for Hamiltonian is a common eigenvector although the eigenvalues are different
- the maximum eigenstate of the transfer matrix and the ground state of the above Hamiltonian are identical becasue both are characterized by the fact that \(f(x_1,\cdots,x_n)>0\)
- see [YY1966-2]
Sutherland's observation
- the eigenvectors of the transfer matrix depended on a,b,c only via the parameter
\(\Delta=\frac{a^2+b^2-c^2}{2ab}\) - is the \delta = anistropic parameter in Heisenberg spin chain model ?
entropy of two-dimensional ice
- entropy is given as
\(Mk\ln W\) where M is the number of molecules and \(W=(4/3)^{3/2}=1.53960\cdots\)
free energy
- \(F=-kT \ln Z\)
partition function
correlation functions
books
- Exactly Solved Models in Statistical mechanics
- R. J. Baxter, 1982
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Ice-type_model
- http://en.wikipedia.org/wiki/Heisenberg_model_(quantum)
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
blogs
- 구글 블로그 검색
STATISTICAL MECHANICS-A REVIEW OF
SELECTED RIGOROUS RESULTS1•2
By JOEL L. LEBOWITZ
Method for calculating finite size corrections in Bethe ansatz systems: Heisenberg chain and six-vertex model
de Vega, H. J.; Woynarovich, F.
expositions
articles
- Integrability of the Quantum XXZ Hamiltonian
- T Miwa, 2009
- http://jmp.aip.org/resource/1/jmapaq/v49/i3/p033514_s1
- Introduction to solvable lattice models in statistical and mathematical physics
- Tetsuo Deguchi, 2003
- Exact Solution of the F Model of An Antiferroelectric
- E.H. Lieb. Phys. Rev. 18 (1967), p. 1046.
- Exact Solution of the Two-Dimensional Slater KDP Model of a Ferroelectric
- E.H. Lieb. Phys. Rev. 19 (1967), p. 108.
- Exact Solution of a Two-Dimensional Model for Hydrogen-Bonded Crystals
- B. Sutherland. Phys. Rev. 19 (1967), p. 103.
- Exact Solution of the Problem of the Entropy of Two-Dimensional Ice
- E. H. Lieb, Phys. Rev. Letters 18, 692 (1967)
- [YY1966-2]One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System
- C. N. Yang, C. P. Yang, Phys. Rev. 150, 327 (1966)
- One-dimensional chain of anisotropic spin-spin interactions
- C. N. Yang, C. P. Yang, Phys. Rev. 150, 321 (1966)
- http://dx.doi.org/10.1103/PhysRev.150.327