"Six-vertex model and Quantum XXZ Hamiltonian"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
114번째 줄: 114번째 줄:
 
* [[Bethe ansatz]]
 
* [[Bethe ansatz]]
 
* [[Heisenberg spin chain model]]
 
* [[Heisenberg spin chain model]]
 +
* [[2D Yang-Mills gauge theory]]
  
 
 
 
 
125번째 줄: 126번째 줄:
 
* [http://tpsrv.anu.edu.au/Members/baxter/book Exactly Solved Models in Statistical mechanics]<br>
 
* [http://tpsrv.anu.edu.au/Members/baxter/book Exactly Solved Models in Statistical mechanics]<br>
 
** R. J. Baxter, 1982
 
** R. J. Baxter, 1982
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
  
 
 
 
 
189번째 줄: 184번째 줄:
 
<h5>articles</h5>
 
<h5>articles</h5>
  
*  Szabo, Richard J, 와/과Miguel Tierz. 2011. “Two-dimensional Yang-Mills theory, Painleve equations and the six-vertex model”. <em>arXiv:1102.3640</em> (2월 17). http://arxiv.org/abs/1102.3640.<br>
+
*  Szabo, Richard J, 와/과Miguel Tierz. 2011. “Two-dimensional Yang-Mills theory, Painleve equations and the six-vertex model”. <em>arXiv:1102.3640</em> (2월 17). http://arxiv.org/abs/1102.3640<br>
* [http://dx.doi.org/10.1063/1.2890671 The free energies of six-vertex models and the n-equivalence relation]<br>
+
* Kazuhiko Minami, [http://dx.doi.org/10.1063/1.2890671 The free energies of six-vertex models and the n-equivalence relation]
** Kazuhiko Minami,
 
 
* [http://dx.doi.org/10.1103/PhysRevLett.18.1046 Exact Solution of the F Model of An Antiferroelectric]<br>
 
* [http://dx.doi.org/10.1103/PhysRevLett.18.1046 Exact Solution of the F Model of An Antiferroelectric]<br>
 
** E.H. Lieb. <em style="">Phys. Rev.</em> '''18''' (1967), p. 1046.
 
** E.H. Lieb. <em style="">Phys. Rev.</em> '''18''' (1967), p. 1046.

2012년 8월 26일 (일) 18:19 판

introduction
  • ice-type model, R model, Rys model
  • XXZ spin chain and the six-vertex transfer matrix have the same eigenvectors
  • Boltzmann weights
  • monodromy matrix
  • trace of monodromy matrix is the transfer matrix
  • power of transfer matrix becomes the partition function

 

 

types of six vertex models
  • on a square lattice with periodic boundary conditions
  • on a square lattice with domain wall boundary conditions

 

 

transfer matrix
  • borrowed from transfer matrix in statistical mechanics
  • transfer matrix is builtup from matrices of  Boltzmann weights
  • finding eigenvalues and eigenvectors of transfer matrix is crucial
  • Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix
  • partition function = trace of power of transfer matrices
  • so the partition function  is calculated in terms of the eigenvalues of the transfer matrix
  • then the problem of solving the model is reduced to the computation of this trace

 

 

 

transfer matrix formalism and coordinate Bethe ansatz
  • \(M=N^{2}\) number of molecules
  • one can regard the up(or down) arrows in a row as 'particles'
  • because of the ice rule, their number is conserved and one can try a Bethe ansatz for the eigenvectors of the transfer matrix
  • \(f(x_1,\cdots,x_n)\) be the amplitude in an eigenvector of the state with up arrows at the sites \( x_1<x_2<\cdots<x_n\)
  • obtain the equation for amplitudes 
    \(f(x_1,\cdots,x_n)=\sum_{P}A(P)\exp(i\sum_{j=1}^{n}x_jk_{P_j})\)
  • Bethe ansatz equation for wave numbers : there are n conditions
    \(\exp(ik_jn)=\prod_{j\neq i}B(k_i,k_j)=\prod_{j=1}^{n}B(k_i,k_j)\)
    where 
    \(B(k,q)=-\frac{1+e^{ik}e^{iq}-e^{ik}}{1+e^{ik}e^{iq}-e^{iq}}\)
  • eigenvalue
    \(\lambda=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{\prod_{j=1}^{n}1-e^{ik_{j}}}=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{(1-e^{ik_{j}})\cdots(1-e^{ik_{j}})}\)

 

 

anistropic one-dimensional Heisenberg model (XXZ model)
  • Heisenberg spin chain model
  • Hamiltonian of XXZ model or XXZ spin chain with  anisotropic parameter \(\Delta=1/2\)
    \(\hat H = -\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z)=-\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \frac{1}{2} \sigma_j^z \sigma_{j+1}^z)\)
  • two body scattering term
    \(s_{jl}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-e^{ik_l}+ e^{ik_l+ik_j}\)
  • equation satisfied by wave numbers
    \(\exp(ik_jN)=(-1)^{N-1}\prod_{l=1}^{N}\exp(-i\theta(k_j,k_l))\)
    where
    \(\theta(p,q)\) is defined as
    \(\exp(-i\theta(p,q))=\frac{1-2\Delta e^{ip}+e^{i(p+q)}}{1-2\Delta e^{iq}+e^{i(p+q)}}=\frac{1-e^{ip}+e^{i(p+q)}}{1- e^{iq}+e^{i(p+q)}}\)
  • fundamental equation
    \(k_jN=2\pi I(k_j)+\sum_{l=1}^{N}\theta(k_j,k_l)\)
  • eigenvalue
  • ground state eigenvector for Hamiltonian  is a common eigenvector although the eigenvalues are different
  • the maximum eigenstate of the transfer matrix and the ground state of the above Hamiltonian are identical because both are characterized by the fact that \(f(x_1,\cdots,x_n)>0\)
  • see [YY1966-2]

 

 

 

Sutherland's observation
  • the eigenvectors of the transfer matrix depended on a,b,c only via the parameter
    \(\Delta=\frac{a^2+b^2-c^2}{2ab}\)
  • \delta = anistropic parameter in Heisenberg spin chain model

 

 

entropy of two-dimensional ice
  • entropy is given as
    \(Mk\ln W\) where M is the number of molecules and \(W=(4/3)^{3/2}=1.53960\cdots\)

 

 

free energy
  • \(F=-kT \ln Z\)

 

 

partition function

 

 

correlation functions

 

 

related items

 

 

books

 

 

encyclopedia

 

 

blogs

 

 

STATISTICAL MECHANICS-A REVIEW OF SELECTED RIGOROUS RESULTS

By JOEL L. LEBOWITZ

 

 

Method for calculating finite size corrections in Bethe ansatz systems: Heisenberg chain and six-vertex model
de Vega, H. J.; Woynarovich, F.

 

 

expositions

 

 

articles

 

links