"Representations of symmetrizable Kac-Moody algebras"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
==introduction==
 
* Let $L(A)$ be a symmetrizable Kac-Moody algebra
 
* the category <math>\mathcal{O}</math>
 
* Integrable modules
 
  
 
==the category $\mathcal{O}$==
 
* $V$ is an object in $\mathcal{O}$
 
# $V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}$
 
# $\dim V_{\lambda}$ is finite for each $\lambda\in \mathfrak{h}^{*}$
 
# there exists a finite set $\lambda_1,\cdots, \lambda_s\in \mathfrak{h}^{*}$ such that each $\lambda$ with $V_{\lambda}\neq 0$ satisfies $\lambda \prec \lambda_i$ for some $i\in \{1,\cdots, s\}$
 
 
 
==integrable module==
 
* An $L(A)$-module $V$ is called integrable if
 
$$
 
V=\oplus_{\lambda\in \mathfrak{h}^{*}}V_{\lambda}
 
$$
 
and if $e_i : V\to V$ and $f_i : V\to V$ are locally nilpotent for all $i$
 
;Thm
 
Let $L(A)$ be a symmetrizable Kac-Moody algebra and $L(\lambda)$ be an irreducible $L(A)$-module in the category $\mathcal{O}$. Then $L(\lambda)$ is integrable if and only if $\lambda$ is dominant and integral.
 
* [[Weyl-Kac character formula]]
 
 
 
==related items==
 
* [[BGG category and BGG resolution]]
 
 
 
[[분류:Lie theory]]
 

2020년 11월 13일 (금) 20:56 판