"Kazhdan-Lusztig conjecture"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
19번째 줄: | 19번째 줄: | ||
* hard Lefshetz theorem | * hard Lefshetz theorem | ||
* Hodge-Riemann bilinear relation | * Hodge-Riemann bilinear relation | ||
+ | |||
+ | |||
+ | ==related items== | ||
+ | * [[Enumerative problems and Schubert calculus]] | ||
+ | * [[Flag manifold and flag variety]] | ||
2013년 12월 9일 (월) 08:01 판
introduction
- 1979 conjectures
- KL character formula
- KL positivity conjecture
Hecke algebra
- new basis of Hecke algebra $\{\underline{H}_{x}| x\in W\}$
$$ \underline{H}_{x}=H_{x}+\sum_{y\in W, \ell(y)<\ell(x)} h_{y,x}H_{y} $$ where $h_{y,x}\in v\mathbb{Z}[v]$ is so called the Kazhdan-Lusztig polynomial
- positivity conjecture : $h_{x,y}\in \mathbb{Z}_{\geq 0}[v]$
Hodge theory
- Poincare duality
- hard Lefshetz theorem
- Hodge-Riemann bilinear relation