"Grassmannian variety"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
11번째 줄: | 11번째 줄: | ||
− | + | ||
− | + | ||
− | + | <h5>Plücker embedding</h5> | |
<math>N=\binom{n}{k}</math> | <math>N=\binom{n}{k}</math> | ||
25번째 줄: | 25번째 줄: | ||
<math>P_{I}(A)</math> = determinant of submatrix of A with column set I | <math>P_{I}(A)</math> = determinant of submatrix of A with column set I | ||
− | + | <math>\begin{array}{l} \Delta _{1,2}=a_{1,1} a_{2,2}-a_{1,2} a_{2,1} \\ \Delta _{1,3}=a_{1,1} a_{2,3}-a_{1,3} a_{2,1} \\ \Delta _{1,4}=a_{1,1} a_{2,4}-a_{1,4} a_{2,1} \\ \Delta _{2,3}=a_{1,2} a_{2,3}-a_{1,3} a_{2,2} \\ \Delta _{2,4}=a_{1,2} a_{2,4}-a_{1,4} a_{2,2} \\ \Delta _{3,4}=a_{1,3} a_{2,4}-a_{1,4} a_{2,3} \end{array}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
2012년 8월 1일 (수) 17:53 판
introduction
\(Gr_{kn}(\mathbb{R})=GL_k\Mat(k,n)\)
Plücker embedding
\(N=\binom{n}{k}\)
\(Gr_{kn}(\mathbb{R}) \to \mathbb{P}^{N-1}\)
\(P_{I}(A)\) = determinant of submatrix of A with column set I
\(\begin{array}{l} \Delta _{1,2}=a_{1,1} a_{2,2}-a_{1,2} a_{2,1} \\ \Delta _{1,3}=a_{1,1} a_{2,3}-a_{1,3} a_{2,1} \\ \Delta _{1,4}=a_{1,1} a_{2,4}-a_{1,4} a_{2,1} \\ \Delta _{2,3}=a_{1,2} a_{2,3}-a_{1,3} a_{2,2} \\ \Delta _{2,4}=a_{1,2} a_{2,4}-a_{1,4} a_{2,2} \\ \Delta _{3,4}=a_{1,3} a_{2,4}-a_{1,4} a_{2,3} \end{array}\)
example Gr(2,4)