"Cyclotomic numbers and Chebyshev polynomials"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (Undo imported revision 33826 by user imported>Pythagoras0) 태그: 편집 취소 |
Pythagoras0 (토론 | 기여) |
||
17번째 줄: | 17번째 줄: | ||
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식] | * [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식] | ||
− | * http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html | + | * http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html also obey the interesting [http://mathworld.wolfram.com/Determinant.html determinant] identity |
41번째 줄: | 41번째 줄: | ||
==articles== | ==articles== | ||
− | * [http://www.jstor.org/stable/2691048 Golden Fields: A Case for the Heptagon] | + | * [http://www.jstor.org/stable/2691048 Golden Fields: A Case for the Heptagon] |
** Peter Steinbach, Mathematics Magazine Vol. 70, No. 1 (Feb., 1997), pp. 22-31 | ** Peter Steinbach, Mathematics Magazine Vol. 70, No. 1 (Feb., 1997), pp. 22-31 | ||
[[분류:개인노트]] | [[분류:개인노트]] | ||
[[Category:quantum dimensions]] | [[Category:quantum dimensions]] |
2020년 11월 16일 (월) 02:30 판
introduction
- borrowed from Andrews-Gordon identity
- quantum dimension and thier recurrence relation
\[d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}\] satisfies \[d_i^2=1+d_{i-1}d_{i+1}\] where \(d_0=1\), \(d_k=1\)
diagonals of regular polygon
- length of hepagon
$$d_i = \frac{\sin (\pi (i+1)/7)}{\sin (\pi/7)} $$
chebyshev polynomials
- 체비셰프 다항식
- http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html also obey the interesting determinant identity
history
articles
- Golden Fields: A Case for the Heptagon
- Peter Steinbach, Mathematics Magazine Vol. 70, No. 1 (Feb., 1997), pp. 22-31