"Strange identity of Freudenthal-de Vries"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
11번째 줄: | 11번째 줄: | ||
* Thiel, Marko, and Nathan Williams. “Strange Expectations.” arXiv:1508.05293 [math], August 21, 2015. http://arxiv.org/abs/1508.05293. | * Thiel, Marko, and Nathan Williams. “Strange Expectations.” arXiv:1508.05293 [math], August 21, 2015. http://arxiv.org/abs/1508.05293. | ||
* H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969. | * H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969. | ||
− | * [http://qjmath.oxfordjournals.org/cgi/reprint/51/3/295.pdf AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries] | + | * [http://qjmath.oxfordjournals.org/cgi/reprint/51/3/295.pdf AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries] |
− | ** John Burn, 2004 | + | ** John Burn, 2004 |
[[분류:개인노트]] | [[분류:개인노트]] | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:Lie theory]] | [[분류:Lie theory]] | ||
[[분류:migrate]] | [[분류:migrate]] |
2020년 11월 16일 (월) 02:35 판
introduction
- Root Systems and Dynkin diagrams
- \(\rho\) Weyl vector
- Kac book 219p, 221p
- strange formula \[\frac{\langle\rho,\rho\rangle}{2h^{\vee}}=\frac{\operatorname{dim}\mathfrak{g}}{24}\]
- very strange formula
- conformal anomaly \[m_{\Lambda}=\frac{(\Lambda+\rho)^2}{2(k+h^{\vee})}-\frac{\rho^2}{2h^{\vee}}=h_{\lambda}-\frac{c(k)}{24}\]
articles
- Thiel, Marko, and Nathan Williams. “Strange Expectations.” arXiv:1508.05293 [math], August 21, 2015. http://arxiv.org/abs/1508.05293.
- H. FREUDENTHAL and H. DE VRIES. “Linear Lie groups”, New York: Academic Press, 1969.
- AN ELEMENTARY PROOF OF THE 'STRANGE FORMULA' OF FREUDENTHAL AND DE Vries
- John Burn, 2004