"Rank of partition and mock theta conjecture"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
2번째 줄: 2번째 줄:
  
 
* [[3rd order mock theta functions]] :<math>f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}</math>
 
* [[3rd order mock theta functions]] :<math>f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}</math>
*  coefficients<br> 1, 1, -2, 3, -3, 3, -5, 7, -6, 6, -10, 12, -11, 13, -17, 20, -21, 21, -27, 34, -33, 36, -46, 51, -53, 58, -68, 78, -82, 89, -104, 118, -123, 131, -154, 171, -179, 197, -221, 245, -262, 279, -314, 349, -369, 398, -446, 486, -515, 557, -614, 671, -715, 767, -845, 920, -977, 1046, -1148, 1244
+
*  coefficients 1, 1, -2, 3, -3, 3, -5, 7, -6, 6, -10, 12, -11, 13, -17, 20, -21, 21, -27, 34, -33, 36, -46, 51, -53, 58, -68, 78, -82, 89, -104, 118, -123, 131, -154, 171, -179, 197, -221, 245, -262, 279, -314, 349, -369, 398, -446, 486, -515, 557, -614, 671, -715, 767, -845, 920, -977, 1046, -1148, 1244
  
 
 
 
 
10번째 줄: 10번째 줄:
 
* '''[Dragonette1952]''' and '''[Andrews1966]'''
 
* '''[Dragonette1952]''' and '''[Andrews1966]'''
 
* concerns the question of partitions with even rank and odd rank
 
* concerns the question of partitions with even rank and odd rank
*  rank of partition =  largest part - number of parts<br> 9의 분할인 {7,1,1}의 경우, rank=7-3=4<br> 9의 분할인 {4,3,1,1}의 경우, rank=4-4=0<br>
+
*  rank of partition =  largest part - number of parts 9의 분할인 {7,1,1}의 경우, rank=7-3=4 9의 분할인 {4,3,1,1}의 경우, rank=4-4=0
 
* <math>N_e(n), N_o(n)</math> number of partition with even rank and odd rank
 
* <math>N_e(n), N_o(n)</math> number of partition with even rank and odd rank
 
* <math>p(n)=N_e(n)+N_o(n)</math>
 
* <math>p(n)=N_e(n)+N_o(n)</math>
 
* <math>\alpha(n)=N_e(n)-N_o(n)</math>
 
* <math>\alpha(n)=N_e(n)-N_o(n)</math>
 
*  this is in fact the coefficient of the [[3rd order mock theta functions]]
 
*  this is in fact the coefficient of the [[3rd order mock theta functions]]
:<math>f(q) = \sum_{n\ge 0} \alpha(n)q^n</math><br>
+
:<math>f(q) = \sum_{n\ge 0} \alpha(n)q^n</math>
 
* thus we need modularity of f(q) to get exact formula for <math>\alpha(n)</math> as <math>p(n)</math> was obtained by the circle method
 
* thus we need modularity of f(q) to get exact formula for <math>\alpha(n)</math> as <math>p(n)</math> was obtained by the circle method
  
71번째 줄: 71번째 줄:
  
 
* [http://dx.doi.org/10.1007/s00222-005-0493-5 The f(q) mock theta function conjecture and partition ranks] Kathrin Bringmann and Ken Ono, Inventiones Mathematicae Volume 165, Number 2, 2006
 
* [http://dx.doi.org/10.1007/s00222-005-0493-5 The f(q) mock theta function conjecture and partition ranks] Kathrin Bringmann and Ken Ono, Inventiones Mathematicae Volume 165, Number 2, 2006
*  George E. Andrews and F. G. Garvan, [http://dx.doi.org/10.1016/0001-8708%2889%2990070-4 Ramanujan's “Lost” Notebook VI: The mock theta conjectures] 1989<br>
+
*  George E. Andrews and F. G. Garvan, [http://dx.doi.org/10.1016/0001-8708%2889%2990070-4 Ramanujan's “Lost” Notebook VI: The mock theta conjectures] 1989
 
* Hickerson, Dean, <cite class="" id="CITEREFHickerson1988" style="line-height: 2em; font-style: normal;">A proof of the mock theta conjectures</cite> (1988), <cite style="line-height: 2em; font-style: normal;"><em style="line-height: 2em;">[http://en.wikipedia.org/wiki/Inventiones_Mathematicae Inventiones Mathematicae]</em> '''94''' (3): 639–660, [http://en.wikipedia.org/wiki/Digital_object_identifier doi]:[http://dx.doi.org/10.1007%2FBF01394279 10.1007/BF01394279], [http://en.wikipedia.org/wiki/Mathematical_Reviews MR][http://www.ams.org/mathscinet-getitem?mr=969247 969247], [http://en.wikipedia.org/wiki/International_Standard_Serial_Number ISSN] [http://worldcat.org/issn/0020-9910 0020-9910]</cite>
 
* Hickerson, Dean, <cite class="" id="CITEREFHickerson1988" style="line-height: 2em; font-style: normal;">A proof of the mock theta conjectures</cite> (1988), <cite style="line-height: 2em; font-style: normal;"><em style="line-height: 2em;">[http://en.wikipedia.org/wiki/Inventiones_Mathematicae Inventiones Mathematicae]</em> '''94''' (3): 639–660, [http://en.wikipedia.org/wiki/Digital_object_identifier doi]:[http://dx.doi.org/10.1007%2FBF01394279 10.1007/BF01394279], [http://en.wikipedia.org/wiki/Mathematical_Reviews MR][http://www.ams.org/mathscinet-getitem?mr=969247 969247], [http://en.wikipedia.org/wiki/International_Standard_Serial_Number ISSN] [http://worldcat.org/issn/0020-9910 0020-9910]</cite>
* '''[Andrews1966]'''[http://dx.doi.org/10.2307%2F2373202 On the theorems of Watson and Dragonette for Ramanujan's mock theta functions]<br>
+
* '''[Andrews1966]'''[http://dx.doi.org/10.2307%2F2373202 On the theorems of Watson and Dragonette for Ramanujan's mock theta functions]
 
** Andrews, George E. (1966), American Journal of Mathematics 88: 454–490
 
** Andrews, George E. (1966), American Journal of Mathematics 88: 454–490
* '''[Dragonette1952]'''[http://dx.doi.org/10.2307%2F1990714 Some asymptotic formulae for the mock theta series of Ramanujan]<br>
+
* '''[Dragonette1952]'''[http://dx.doi.org/10.2307%2F1990714 Some asymptotic formulae for the mock theta series of Ramanujan]
 
** Dragonette, Leila A. (1952), Transactions of the American Mathematical Society 72: 474–500
 
** Dragonette, Leila A. (1952), Transactions of the American Mathematical Society 72: 474–500
 
* <cite class="" id="CITEREFWatson1937" style="line-height: 2em; font-style: normal;">Watson, G. N. (1937), "The Mock Theta Functions (2)", <em style="line-height: 2em;">Proc. London Math. Soc.</em> '''s2-42''': 274–304, [http://en.wikipedia.org/wiki/Digital_object_identifier doi]:[http://dx.doi.org/10.1112%2Fplms%2Fs2-42.1.274 10.1112/plms/s2-42.1.274]</cite>
 
* <cite class="" id="CITEREFWatson1937" style="line-height: 2em; font-style: normal;">Watson, G. N. (1937), "The Mock Theta Functions (2)", <em style="line-height: 2em;">Proc. London Math. Soc.</em> '''s2-42''': 274–304, [http://en.wikipedia.org/wiki/Digital_object_identifier doi]:[http://dx.doi.org/10.1112%2Fplms%2Fs2-42.1.274 10.1112/plms/s2-42.1.274]</cite>

2020년 11월 16일 (월) 03:36 판

order 3 Ramanujan mock theta function

  • 3rd order mock theta functions \[f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}\]
  • coefficients 1, 1, -2, 3, -3, 3, -5, 7, -6, 6, -10, 12, -11, 13, -17, 20, -21, 21, -27, 34, -33, 36, -46, 51, -53, 58, -68, 78, -82, 89, -104, 118, -123, 131, -154, 171, -179, 197, -221, 245, -262, 279, -314, 349, -369, 398, -446, 486, -515, 557, -614, 671, -715, 767, -845, 920, -977, 1046, -1148, 1244

 

Andrews-Dragonette

  • [Dragonette1952] and [Andrews1966]
  • concerns the question of partitions with even rank and odd rank
  • rank of partition =  largest part - number of parts 9의 분할인 {7,1,1}의 경우, rank=7-3=4 9의 분할인 {4,3,1,1}의 경우, rank=4-4=0
  • \(N_e(n), N_o(n)\) number of partition with even rank and odd rank
  • \(p(n)=N_e(n)+N_o(n)\)
  • \(\alpha(n)=N_e(n)-N_o(n)\)
  • this is in fact the coefficient of the 3rd order mock theta functions

\[f(q) = \sum_{n\ge 0} \alpha(n)q^n\]

  • thus we need modularity of f(q) to get exact formula for \(\alpha(n)\) as \(p(n)\) was obtained by the circle method

 

 

harmonic Maass form of weight 1/2

  • Zweger's completion

 

 

construction of the Maass-Poincare series

 

 

generalization

  • crank

 

 

history


 

related items


computational resource


expositions


articles