"Mahler measure"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “분류:개인노트분류:개인노트” 문자열을 “분류:개인노트” 문자열로)
imported>Pythagoras0
5번째 줄: 5번째 줄:
 
 
 
 
  
==history==
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
 
 
 
 
 
 
  
 
==related items==
 
==related items==
21번째 줄: 14번째 줄:
 
==encyclopedia==
 
==encyclopedia==
  
* http://ko.wikipedia.org/wiki/
 
 
* http://en.wikipedia.org/wiki/Mahler_measure
 
* http://en.wikipedia.org/wiki/Mahler_measure
 
* http://mathworld.wolfram.com/LehmersMahlerMeasureProblem.html
 
* http://mathworld.wolfram.com/LehmersMahlerMeasureProblem.html
 
* http://mathworld.wolfram.com/MahlerMeasure.html
 
* http://mathworld.wolfram.com/MahlerMeasure.html
* http://en.wikipedia.org/wiki/
 
 
 
 
 
 
 
 
 
==books==
 
  
 
 
 
 
  
* [[2010년 books and articles]]<br>
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
 
 
 
 
 
 
 
 
 
  
 
==expositions==
 
==expositions==
 
+
* [http://www.birs.ca/workshops/2003/03w5035/ The many aspects of Mahler's measure], Banff workshop, 2003
 
* Matilde N. Laln [http://www.math.ualberta.ca/%7Emlalin/ubc.pdf Mahler measures as values of regulators] 2006
 
* Matilde N. Laln [http://www.math.ualberta.ca/%7Emlalin/ubc.pdf Mahler measures as values of regulators] 2006
 
* [http://www.math.ca/notes/v34/n2/Notesv34n2.pdf Mahler's measure, hyperbolic geometry and the dilogarithm]
 
* [http://www.math.ca/notes/v34/n2/Notesv34n2.pdf Mahler's measure, hyperbolic geometry and the dilogarithm]
66번째 줄: 40번째 줄:
 
* C. J. Smyth, An explicit formula for the Mahler measure of a family of 3-variable polynomials, J. Th. Nombres Bordeaux 14 (2002), 683{700
 
* C. J. Smyth, An explicit formula for the Mahler measure of a family of 3-variable polynomials, J. Th. Nombres Bordeaux 14 (2002), 683{700
  
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
==question and answers(Math Overflow)==
 
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
  
 
 
 
 
91번째 줄: 46번째 줄:
  
 
* http://enyokoyama.blogspot.com/2012/05/mahlers-measure-hyperbolic-geometry-and.html<br> 구글 블로그 검색<br>
 
* http://enyokoyama.blogspot.com/2012/05/mahlers-measure-hyperbolic-geometry-and.html<br> 구글 블로그 검색<br>
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
  
 
 
 
 
  
==experts on the field==
 
 
* [http://www.math.ubc.ca/%7Eboyd/boyd.html David W. Boyd]<br>
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
==links==
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표 현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[Category:research topics]]
 
[[Category:research topics]]

2013년 6월 26일 (수) 08:04 판

introduction

  1. lehmer[x_] := 1 + x - x^3 - x^4 - x^5 - x^6 - x^7 + x^9 + x^10
    p[x_] := x^4 - x^2 + 1
    Plot[Log[Abs[p[Exp[2 Pi*I*t]]]], {t, 0, 1}]
    Exp[NIntegrate[Log[Abs[p[Exp[2 Pi*I*t]]]], {t, 0, 1}]]

 


related items

 

 

encyclopedia

 


expositions

 

 

articles


 

blogs