"Mahler measure"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
93번째 줄: 93번째 줄:
  
 
==expositions==
 
==expositions==
 +
* Sengun, Mehmet Haluk. 2014. “An Introduction to A-Polynomials and Their Mahler Measures.” arXiv:1401.7484 [math]. http://arxiv.org/abs/1401.7484.
 
* Bertin, Marie-José, and MATILDE LALÍN. [http://www.dms.umontreal.ca/~mlalin/surveyMahlerfinal-revised.pdf Mahler Measure of Multivariable Polynomials] Women in Numbers 2: Research Directions in Number Theory 606 (2013): 125.
 
* Bertin, Marie-José, and MATILDE LALÍN. [http://www.dms.umontreal.ca/~mlalin/surveyMahlerfinal-revised.pdf Mahler Measure of Multivariable Polynomials] Women in Numbers 2: Research Directions in Number Theory 606 (2013): 125.
 
* Smyth, Chris. 2008. “The Mahler Measure of Algebraic Numbers: a Survey.” In Number Theory and Polynomials, 352:322–349. London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press. http://www.maths.ed.ac.uk/~chris/Smyth240707.pdf
 
* Smyth, Chris. 2008. “The Mahler Measure of Algebraic Numbers: a Survey.” In Number Theory and Polynomials, 352:322–349. London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press. http://www.maths.ed.ac.uk/~chris/Smyth240707.pdf
107번째 줄: 108번째 줄:
 
===lecture notes===
 
===lecture notes===
  
*  Course at Harvard University Spring 2002.<br>
+
*  Course at Harvard University Spring 2002.
* '''Fernando Rodriguez Villegas'''http://www.ma.utexas.edu/users/villegas/KL/<br>
+
* '''Fernando Rodriguez Villegas'''http://www.ma.utexas.edu/users/villegas/KL/
*  Suggested '''[http://www.ma.utexas.edu/users/villegas/KL/periods.dvi exercises]''' on periods.<br>
+
*  Suggested '''[http://www.ma.utexas.edu/users/villegas/KL/periods.dvi exercises]''' on periods.
*  Notes last updated: May 14, 2002.<br>
+
*  The following are class notes taken by Sam Vandervelde (samv@mandelbrot.org).
*  The following are class notes taken by Sam Vandervelde (samv@mandelbrot.org). Please let me or Sam know of any comments, corrections, etc. Thanks.<br>
 
 
* [[3313085/attachments/2687571|sam-notes-1-1.pdf]]
 
* [[3313085/attachments/2687571|sam-notes-1-1.pdf]]
* [[3313085/attachments/2687571|3313085/attachments/2687571]] [[3313085/attachments/2687573|sam-notes-2.pdf]]
+
* [[3313085/attachments/2687573|sam-notes-2.pdf]]
 
* [[3313085/attachments/2687575|sam-notes-3.pdf]]
 
* [[3313085/attachments/2687575|sam-notes-3.pdf]]
 
* [[3313085/attachments/2687577|sam-notes-4.pdf]]
 
* [[3313085/attachments/2687577|sam-notes-4.pdf]]
122번째 줄: 122번째 줄:
 
* '''[http://www.ma.utexas.edu/users/villegas/KL/sam-notes-4.dvi Notes 4]'''
 
* '''[http://www.ma.utexas.edu/users/villegas/KL/sam-notes-4.dvi Notes 4]'''
 
* '''[http://www.ma.utexas.edu/users/villegas/KL/sam-notes-5.dvi Notes 5]'''
 
* '''[http://www.ma.utexas.edu/users/villegas/KL/sam-notes-5.dvi Notes 5]'''
*  The following are class notes taken by Matilde Lalin (mlalin@math.harvard.edu). Please let me or Matilde know of any comments, corrections, etc. Thanks.<br>
+
*  The following are class notes taken by Matilde Lalin (mlalin@math.harvard.edu).
 
* '''[http://www.ma.utexas.edu/users/villegas/KL/KL.ps Notes 6]'''
 
* '''[http://www.ma.utexas.edu/users/villegas/KL/KL.ps Notes 6]'''
  

2014년 2월 17일 (월) 00:10 판

introduction

  • for a Laurent polynomial $P(x_1,\cdots, x_n)\in \mathbb{Z}[x_1^{\pm 1},\cdots,x_n^{\pm 1}]$, the Mahler measure is defined to be

$$ \begin{aligned} m(P):&=\int_{0}^{1}\cdots \int_{0}^{1} \ln |P(e^{2\pi i \theta_1},\cdots, e^{2\pi i \theta_n})|\, d\theta_1\cdots d\theta_n\\ &= \frac{1}{(2\pi i)^n}\int_{|x_1|=\dots=|x_n|=1} \log|P(x_1,\dots,x_n)| \; \frac{dx_1}{x_1} \dots \frac{dx_n}{x_n} \end{aligned} $$


monic polynomial

  • For a monic polynomial in one variable $P \in \mathbb{C}[x]$ one can compute $m(P)$ by Jensen's formula

$$ \frac{1}{2\pi i}\int_{|x|=1} \log|P(x)| \; \frac{dx}{x} = \sum_{\alpha:P(\alpha)=0} \max(0,\log|\alpha|)\,, $$

  • but no explicit formula is known for polynomials in several variables.


examples

Smyth

thm [Smith1981]

$$ m(1+x_1+x_2)=L_{-3}'(-1)=\frac{3\sqrt{3}}{4\pi}L_{-3}(2)=0.3230659472\cdots $$

$$ m(1+x_1+x_2+x_3)=14\zeta'(-2)=\frac{7}{2\pi^2}\zeta(3)=0.4262783988\cdots $$


Rodriguez-Villegas

conjecture

$$ m(1+x_1+x_2+x_3+x_4)=-L_{f}'(-1)=\frac{675\sqrt{15}}{16\pi^5}L_{f}(4)=0.5444125617\cdots $$

$$ m(1+x_1+x_2+x_3+x_4+x_5)=-8L_{g}'(-1)=\frac{648}{\pi^6}L_{g}(5)=0.6273170748\cdots $$ where $$ f(\tau)=\eta(3\tau)^3\eta(5\tau)^3+\eta(\tau)^3\eta(15\tau)^3 $$ and $$ g(\tau)=\eta(\tau)^2\eta(2\tau)^2\eta(3\tau)^2\eta(6\tau)^2 $$


Deninger

conjecture

$$ m(1+x+\frac{1}{x}+y+\frac{1}{y})=L_{15A}'(0)=\frac{15}{4\pi^2}L_{15A}(2)=0.2513304337\cdots $$



Boyd

conjecture

$$ m(1+x+\frac{1}{x}+y+\frac{1}{y}+xy+\frac{1}{xy})=L_{14A}'(0)=\frac{7}{2\pi^2}L_{14A}(2)=0.2274812230\cdots $$

$$ m(-1+x+\frac{1}{x}+y+\frac{1}{y}+xy+\frac{1}{xy})=L_{30A}'(0)=\frac{15}{2\pi^2}L_{30A}(2)=0.6168709387\cdots $$


related items


computational resource


encyclopedia


expositions


lecture notes


articles


links