"베셀 함수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (section '관련논문' updated) |
Pythagoras0 (토론 | 기여) |
||
3번째 줄: | 3번째 줄: | ||
* 제1종 변형 베셀 함수 | * 제1종 변형 베셀 함수 | ||
* 제2종 변형 베셀함수 | * 제2종 변형 베셀함수 | ||
− | + | :<math> | |
K_{\nu }(x)= \int_0^{\infty } (\exp (-x (\cosh t))) (\cosh (\nu t)) \, dt | K_{\nu }(x)= \int_0^{\infty } (\exp (-x (\cosh t))) (\cosh (\nu t)) \, dt | ||
− | + | </math> | |
2020년 11월 16일 (월) 04:17 기준 최신판
개요
- 베셀 함수
- 제1종 변형 베셀 함수
- 제2종 변형 베셀함수
\[ K_{\nu }(x)= \int_0^{\infty } (\exp (-x (\cosh t))) (\cosh (\nu t)) \, dt \]
메모
- http://mathoverflow.net/questions/105971/how-should-an-analytic-number-theorist-look-at-bessel-functions
- NIST Digital Library of Mathematical Functions
관련된 항목들
관련논문
- Zhi Qi, Theory of Bessel Functions of High Rank - II: Hankel Transforms and Fundamental Bessel Kernels, arXiv:1411.6710 [math.NT], November 25 2014, http://arxiv.org/abs/1411.6710
- Zhi Qi, Theory of Bessel Functions of High Rank - I: Fundamental Bessel Functions, arXiv:1408.5652 [math.NT], August 25 2014, http://arxiv.org/abs/1408.5652
- Zhi Qi, On the Fourier Transform of Bessel Functions over Complex Numbers - I: the Spherical Case, arXiv:1606.02913 [math.CA], June 09 2016, http://arxiv.org/abs/1606.02913
- Maier, Robert S. “Integrals of Lipschitz-Hankel Type, Legendre Functions, and Table Errata.” arXiv:1509.08963 [math], September 29, 2015. http://arxiv.org/abs/1509.08963.