"Free fermion"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
  
* $c=1/2$ (for $\psi$ real)
+
* <math>c=1/2</math> (for <math>\psi</math> real)
* $c=1$ (for \psi complex)
+
* <math>c=1</math> (for \psi complex)
  
  
12번째 줄: 12번째 줄:
  
 
==OPE of fermionic fields==
 
==OPE of fermionic fields==
* $\psi(z)\psi(w) \sim \frac{1}{(z-w)}$
+
* <math>\psi(z)\psi(w) \sim \frac{1}{(z-w)}</math>
* $\partial \psi(z) \psi(w) \sim -\frac{1}{(z-w)^2}$
+
* <math>\partial \psi(z) \psi(w) \sim -\frac{1}{(z-w)^2}</math>
* $\partial \psi(z) \partial \psi(w) \sim -\frac{2}{(z-w)^3}$
+
* <math>\partial \psi(z) \partial \psi(w) \sim -\frac{2}{(z-w)^3}</math>
 
 
 
 
  
 
==energy-momentum tensor==
 
==energy-momentum tensor==
* $T(z)=-\frac{1}{2}:\psi(z)\partial \psi(z):=-\frac{1}{2}\left(\lim_{w\to z}\psi(z)\partial \psi(z)+\frac{1}{(z-w)^2}\right)$
+
* <math>T(z)=-\frac{1}{2}:\psi(z)\partial \psi(z):=-\frac{1}{2}\left(\lim_{w\to z}\psi(z)\partial \psi(z)+\frac{1}{(z-w)^2}\right)</math>
* $T(z)\psi(w) \sim \frac{\psi(w)}{2(z-w)^2}+\frac{\partial \psi(w)}{(z-w)}$
+
* <math>T(z)\psi(w) \sim \frac{\psi(w)}{2(z-w)^2}+\frac{\partial \psi(w)}{(z-w)}</math>
* $T(z)\partial \psi(w) \sim \frac{\psi(w)}{2(z-w)^3}+\frac{3\partial \psi(w)}{2(z-w)^2}+\frac{\partial^2 \psi(w)}{(z-w)}$
+
* <math>T(z)\partial \psi(w) \sim \frac{\psi(w)}{2(z-w)^3}+\frac{3\partial \psi(w)}{2(z-w)^2}+\frac{\partial^2 \psi(w)}{(z-w)}</math>
* $T(z)T(w) \sim \frac{1}{4(z-w)^4}+\frac{2T(w)}{(z-w)^2}+\frac{\partial T(w)}{(z-w)}$
+
* <math>T(z)T(w) \sim \frac{1}{4(z-w)^4}+\frac{2T(w)}{(z-w)^2}+\frac{\partial T(w)}{(z-w)}</math>
  
  

2020년 11월 16일 (월) 04:28 판

introduction

  • \(c=1/2\) (for \(\psi\) real)
  • \(c=1\) (for \psi complex)


action

\(S= \int\!d^2x\, \psi^\dagger \gamma^0 \gamma^\mu \partial_\mu \psi= \int\!d^2z\, \psi^\dagger_R \bar\partial \psi_R + \psi_L^\dagger \bar\partial \psi_L\,\)

 

OPE of fermionic fields

  • \(\psi(z)\psi(w) \sim \frac{1}{(z-w)}\)
  • \(\partial \psi(z) \psi(w) \sim -\frac{1}{(z-w)^2}\)
  • \(\partial \psi(z) \partial \psi(w) \sim -\frac{2}{(z-w)^3}\)

 

energy-momentum tensor

  • \(T(z)=-\frac{1}{2}:\psi(z)\partial \psi(z):=-\frac{1}{2}\left(\lim_{w\to z}\psi(z)\partial \psi(z)+\frac{1}{(z-w)^2}\right)\)
  • \(T(z)\psi(w) \sim \frac{\psi(w)}{2(z-w)^2}+\frac{\partial \psi(w)}{(z-w)}\)
  • \(T(z)\partial \psi(w) \sim \frac{\psi(w)}{2(z-w)^3}+\frac{3\partial \psi(w)}{2(z-w)^2}+\frac{\partial^2 \psi(w)}{(z-w)}\)
  • \(T(z)T(w) \sim \frac{1}{4(z-w)^4}+\frac{2T(w)}{(z-w)^2}+\frac{\partial T(w)}{(z-w)}\)


related items


computational resource

 

expositions