"아인슈타인 텐서"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
13번째 줄: | 13번째 줄: | ||
* relativistic matter field equation | * relativistic matter field equation | ||
:<math>G_{\mu \nu} + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}</math> 또는 | :<math>G_{\mu \nu} + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}</math> 또는 | ||
− | :<math>R_{\mu \nu} - {1 \over 2}g_{\mu \nu}\,R + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}</math | + | :<math>R_{\mu \nu} - {1 \over 2}g_{\mu \nu}\,R + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}</math> 여기서 <math>\Lambda</math>는 우주상수, <math>T_{\mu \nu}</math>는 스트레스-에너지 텐서 |
2020년 11월 16일 (월) 06:39 판
개요
- 아인슈타인 텐서 \(\mathbf{G}\)의 성분\[G_{\mu\nu} = R_{\mu\nu} - {1\over2} g_{\mu\nu}R.\]
- 여기서\(g_{\mu \nu}\)는 계량 텐서 (metric tensor), \(R_{\mu \nu}\) 는 리치 곡률 텐서 (Ricci curvature tensor) , \(R\)은 리치 곡률 스칼라
- 일반상대성 이론에서 중요한 역할
아인슈타인 장방정식
- relativistic matter field equation
\[G_{\mu \nu} + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}\] 또는 \[R_{\mu \nu} - {1 \over 2}g_{\mu \nu}\,R + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}\] 여기서 \(\Lambda\)는 우주상수, \(T_{\mu \nu}\)는 스트레스-에너지 텐서
역사
메모
관련된 항목들
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Einstein_field_equations
- http://en.wikipedia.org/wiki/Einstein–Hilbert_action
- http://en.wikipedia.org/wiki/Friedmann–Lemaître–Robertson–Walker_metric