"르벡 항등식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
6번째 줄: 6번째 줄:
  
 
 
 
 
 
 
 
 
 
 
 
==역사==
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사 연표]]
 
  
 
 
 
 

2020년 11월 16일 (월) 07:24 판

개요

  • [Alladi&Gordon1993] 278&279p\[f(a,c)=\sum_{k\geq 0}\frac{a^{k}q^{k(k-1)/2}(-cq)_{k}}{(q)_{k}}\]
  • a=q, c=z일 때, 르벡 항등식 (Lebesgue's identity) 을 얻는다\[f(q,z)=\sum_{k\geq 0}\frac{q^{k}q^{k(k-1)/2}(-zq)_{k}}{(q)_{k}}=\sum_{k\geq 0}\frac{q^{k(k+1)/2}(-zq)_{k}}{(q)_{k}}=(-zq^2;q^2)_{\infty}(-q)_{\infty}=\prod_{m=1}^{\infty} (1+zq^{2m})(1+q^{m})\]

 

 

 

메모

 

 

관련된 항목들

 

 

 

사전 형태의 자료

 

 

리뷰논문과 에세이

 

 

관련논문